ХАРАКТЕРИСТИКИ ДИНЕЙТРОННОЙ ПЕРИФЕРИИ ЯДРА ¹⁴С (g. s.), ПРОЯВЛЯЮЩИЕСЯ В РЕАКЦИИ ¹²С(t, p)¹⁴С

Л.И. Галанина, Н.С. Зеленская

Московский государственный университет имени М.В Ломоносова, Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына Отдел ядерных реакций

Недавние экспериментальные исследования среднеквадратичных радиусов нейтронно-избыточных изотопов углерода показали, что в ядре ¹⁵С формируется нейтронное гало. Ядро ¹⁴С не является гало-ядром, поскольку в нем из всех возможных двухчастичных подсистем только одна – динейтрон – является несвязанной. Тем не менее, структура его периферии представляет интерес как возможного кора в ядре ¹⁵С. Известно, что основное состояние 0⁺ в ядре ¹⁴С практически полностью (≈ 87–97%) описывается 1*p*-оболочечной конфигурацией, так что ¹⁴С имеет два избыточных нейтрона в $1p_{1/2}$ -оболочке над кором ¹²С. Эти нейтроны могут располагаться относительно кора в различных конфигурациях: динейтронной или сигарообразной. Превышение среднеквадратичных размеров любой конфигураотносительно радиуса кора ¹²С свидетельствует о ЦИИ существовании нейтронной периферии у ядра ¹⁴С.

2

Структура и размеры динейтронной периферии в ядре ${}^{14}C(g. s.)$ определяется с помощью реакции ${}^{12}C(t, p){}^{14}C(g. s.)$ при $E_t \sim 6-10$ МэВ/нуклон. Учитываются прямые механизмы реакции: срыв динейтрона (полюсная диаграмма) и последовательная передача нейтронов (четырехугольная диаграмма).

Краткая характеристика использованных кодов и параметров расчета

- FRESCO –программа, разработанная Яном Томпсоном (с 1983 по 2006 год) для расчетов реакций в ядерной физике в рамках метода связанных каналов. Программа может учитывать неупругие и одночастичные возбуждения, а также передачу нуклонов от одного ядра к другому по отдельности или в виде одновременного перехода в виде кластера.
 - В расчетах использованы современные глобальные оптические потенциалы. Волновые функции связанных состояний динейтрона в ¹⁴С и нейтронов в ^{13, 14}С рассчитывались с экспоненциальной асимптотикой с фиксированными $r_0 = 1.25 \text{ Фм}$ и a = 0.65 Фм.
 - Спектроскопические амплитуды в каждой вершине распада диаграмм для прямых механизмов рассчитаны в оболочечной модели для чистых (1p⁹⁽¹⁰⁾) конфигураций.

Рассчитанное дифференциальное сечение реакции ${}^{12}C(t, p){}^{14}C(g. s.)$ для обоих механизмов с учетом интерференции их амплитуд представлено на рисунке.

Красная кривая – суммарное сечение, зеленая – сечение срыва динейтрона, синяя – сечение независимой передачи нейтронов.

Эксперимент-[Mordechai S., Fortune H. T. // Nucl. Phys. A 1978. 301, N. 2. P. 463]. Как видно из рисунка, рассчитанное сечение согласуется с экспериментальным. При углах вылета протонов $\theta_p < 50^\circ$ основной вклад в полное сечение вносит механизм срыва динейтрона, но и в этой области углов влияние механизма независимой передачи нейтронов на полное сечение заметно. При увеличении угла парциальные сечения обоих механизмов сопоставимы.

При 50° < θ_p < 90° именно учет механизма независимой передачи нейтронов позволяет согласовать полное сечение с экспериментом. Полученное согласие показывает, что мы корректно восстановили ВФ динейтрона и виртуальных нейтронов относительно ядер ¹²С(¹³С).

Определение размеров нейтронной периферии в ядре ¹⁴C(g. s.)

7

В реакции (t, p) механизм срыва динейтрона на асимптотике описывает динейтронную конфигурацию в ядре ¹⁴C, а механизм независимой передачи нейтронов – сигарообразную в ^{13,14}C. Определенные волновые функции динейтрона $\Psi_{20}(r_{nn})$ относительно ¹²C и каждого нейтрона $\Psi_{11}^{i}(r_{i})$ (i = 1, 2) относительно ^{12,13}C с правильной экспоненциальной асимптотикой позволяют рассчитать среднеквадратичные размеры каждой конфигурации в соответствии с выражениями

$$\left\langle L_{nn} \right\rangle = \left\{ \int r_{nn}^{4} \left[\Psi_{20}(r_{nn}) \right]^{2} dr \right\}^{1/2} \\ \left\langle L_{i} \right\rangle = \left\{ \int r_{i}^{4} \left[\Psi_{11}^{i}(r_{i}) \right]^{2} dr_{i} \right\}^{1/2}$$

В (4) волновая функция первого нейтрона описывает

В выражениях для $\langle L_i \rangle$ волновая функция первого нейтрона описывает его движение относительно кора ¹²С, а второго – ¹³С, т.е. размеры плеч сигарообразной конфигурации в силу эффектов отдачи могут быть не одинаковыми. Эти размеры относительно кора ¹²С уравновешиваются путем пересчета размера периферии $\langle L_3 \rangle$ второго нейтрона с использованием преобразования Тальми

$$\langle L_3 \rangle = \frac{1}{C+1} \langle L_1 \rangle + \langle L_2 \rangle, C = {}^{12}C.$$

Рассчитанные значения (L) приведены в таблице
 вместе со значениями среднеквадратичных радиусов ядер ^{12, 14}C.

$R_m(^{14}\mathrm{C}), \Phi_\mathrm{M}$	$R_m(^{12}\mathrm{C}),$ Φ_M	$\langle L_{nn} \rangle, \Phi_{M}$	⟨ <i>L</i> ₁ ⟩, Фм	⟨ <i>L</i> ₂ ⟩, Фм	$\langle L_1 \rangle$, Φ_{M}
2.42	2.47	2.75	3.26	3.01	3.27

Как видно из таблицы, динейтронная периферия в ¹⁴С проявляется слабо и представляет собой плотную «кожу» на его поверхности. Размеры плеч однонейтронной конфигурации в 1.5 раза превышают радиус кора и определяют разреженную, достаточно протяженную структуру нейтронной периферии в ядре ¹⁴С.

10

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Рассчитано сечение реакции ${}^{12}C(t, p){}^{14}C(g. s.)$ при учете вклада механизмов срыва динейтрона и независимой передачи нейтронов. Механизм срыва динейтрона дает основной вклад в сечение реакции при $\theta_p < 50^\circ$. Механизм независимой передачи нейтронов улучшает согласие с экспериментом при больших θ_p . Корректно восстановлены волновые функций динейтрона и виртуальных нейтронов относительно ядер ¹²С(¹³С), что позволяет рассчитать размеры двухнейтронной периферии ядра ¹⁴С в различных конфи-гурациях. Показано, что динейтронная периферия в ¹⁴С проявляется слабо и представляет собой плотную «кожу» на его поверхности. Однонейтронная «кожа» в сигарообразной конфигурации, соответствующей механизму независимой передачи нейтронов, разрежена и имеет достаточную протяженность. Именно эта конфигурация определяет двухнейтронную периферию в ядре ¹⁴С.

Благодарю за внимание!

11