От символьной регрессии к физическому искусственному интеллекту

Андрей Устюжанин¹

¹ НИУ ВШЭ

2021, НИИЯФ МГУ

18.11.2021

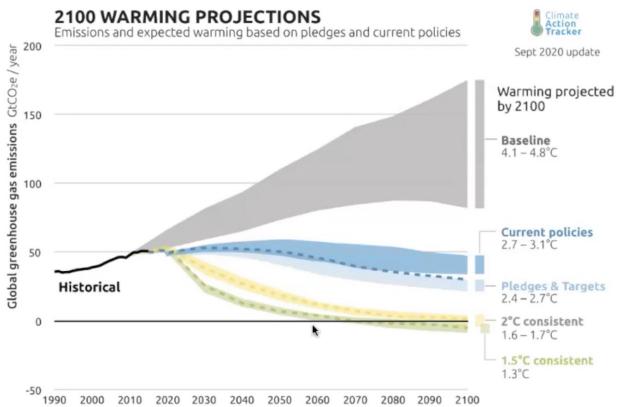
Shameless plug

- Development and application of Machine Learning methods for solving tough scientific challenges;
- Member of collaborations LHCb, SHiP, OPERA, NEWSdm, KIWI
- Research Project examples:
 - Storage/speed optimization for LHCb triggers;
 - Particle identification algorithms;
 - Optimization of detector devices;
 - Fast and meaningful physical process simulation.
- Co-organization of ML challenges: Flavours of Physics, TrackML
- 7 Summer schools on Machine Learning for High-Energy Physics
- Open for interns, graduate students and post doc researchers!

LAMBDA • HSE

Motivation

- Growing demands for new:
 - Technologies (manufacturing processes), materials, drugs, ...



https://climate.mit.edu/posts/ten-big-global-challenges-technology-could-solve

Why AI + Physics?

- Physics has been the strong inspiration source for AI
 - Simulated annealing, Energy GANs, Langevin gradient descent, diffusion models, ...
- Physicists deal with the Universe on the widest range of scales (from quarks to galaxies)
 - Approaches that easy to change the scale of the object under the study
 - Natural account for uncertainty in data and in models
- Has good tradition on compressing empirical facts/information into succinct principles
 - Powerful theoretical foundation + experimental verification tradition
- Rich mathematical language for natural phenomena description
- Strong real phenomena simulation experience, methods and tools

Why AI + Physics?

Challenges for describing complex systems

- Emergence
- Dark matter search
- Quantum vs classical gravity
- Self-driving research

atwentwrongwith.com/2020/07/23/what-went-wrong-with-inception-2010/

https://www.artstation.com/artwork/AqawDV

Commonly used ML tasks and algorithms

Structured (Tabular) Data Sources: experimental and/or computational databases. Examples: AFLOW ³⁴ , Materials Project ³⁵ , JARVIS ³⁸ , ICSD ⁸⁶ , Pauling File ⁹¹ Pauling File ⁹¹ Ref. 74: Trained Ref. 74: Trained Pata Pata Sources: experimental and/or computational databases. Examples: AFLOW ³⁴ , Materials Project ³⁵ , JARVIS ³⁸ , ICSD ⁸⁶ , Pauling File ⁹¹ (Arget properties with discrete categories) and regression (target properties properties are continuous)	
and/or computational databases. Examples: AFLOW ³⁴ , Materials Project ³⁵ , JARVIS ³⁸ , ICSD ⁸⁶ , Pauling File ⁹¹ Uses labeled data. Divided into classification (target properties with discrete categories) and regression (target prop- erties are continuous)	del to predict of a material mposition and
Materials Project ³⁵ , JARVIS ³⁸ , ICSD ⁸⁶ , Pauling File ⁹¹ discrete categories) and regression (target prop- erties are continuous) <u>Deep Learning models:</u> boosting classifi data to predict s potential 2D ma	perconducting composition.
	sifier on DFT ct stability of materials
Unstructured Data Can learn features from both structured and unstructured data Unstructured Data SISTM image data	data to find rameter type in
Sources: images, spectra, text Examples:	data to find
Imaging/spectroscopic experiments ^{107,110} , scientific articles ¹⁰⁰ Used to discover latent structure in unlabeled data Used to discover latent structure in unlabeled data	al structure sition. Cluste- presentations

Machine Learning (ML) challenges

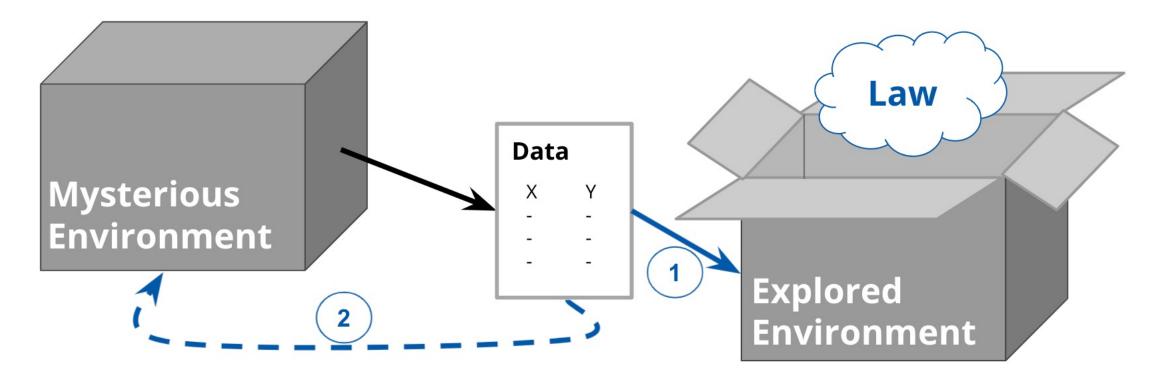
- Incremental data handling
- Data representation
 - Account for noise
- Forward modelling (fast simulation)
 - Generative model, differentiable
 - Interpretability
 - Inductive bias
- Inference (inverse problem)
 - Physical

Model interpretation

- Model-agnostic
 - Example-based
 - Global: how features affect the prediction on average
 - Local: explain individual predictions
- Model-centric, e.g., for neural networks:
 - Learned Features: What features has the neural network learned?
 - Pixel Attribution (Saliency Maps): How did each pixel contribute to a particular prediction?
 - Which more abstract concepts has the neural network learned?
 - Adversarial Examples: How can we trick the neural network?
 - How influential was a training data point for a certain prediction?

		¥_(B)
	Humans	A.
	1 inform	
	Interpretabi Methods	lity $IF_{X>4}$ $THEN_{Y=1}$
	1 extract	
ed?	Black Box Model	
te to	1 learn	
J?	Data	
	1 capture	
on?	World	
https://chri	istophm.github.	io/interpretable-ml-book/agnostic.html

Symbolic regression problem statement



Laws: statements y=f(x), f - symbolic expression

- 1. Find the formula that best fits the given dataset
- 2. Add the most informative data to the dataset

Basic approach

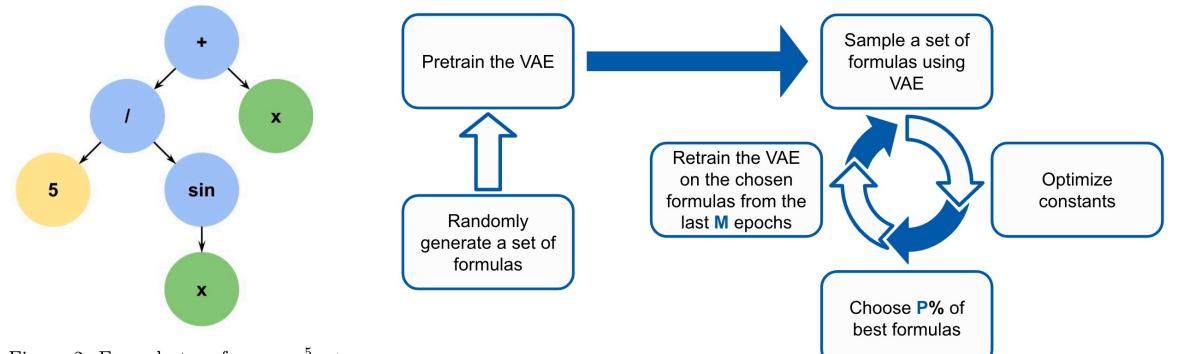
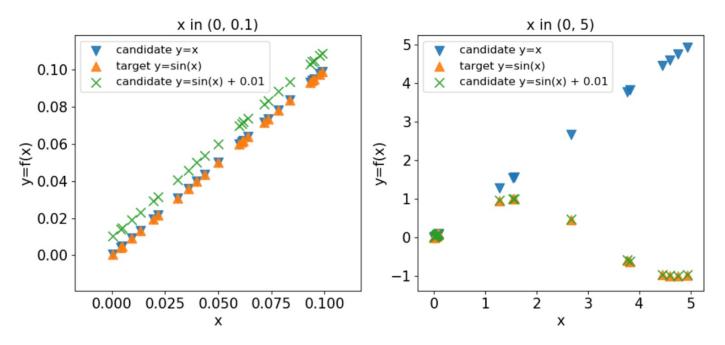


Figure 2: Formula tree for $y = \frac{5}{\sin x} + x$

Active Learning

- Add points to the training sample based on evaluation of the best trained formula
 - Experiments are expensive
 - Faster discovery
 - Less data, less computational resources
- Possible approaches:
 - Random sampling choose a new point randomly
 - Full variance choose the point with max variance based on the whole retraining set



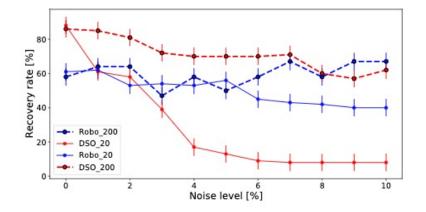
- **Top-10 variance** - choose the point with max variance based on the top-10 generated formulas

Performance comparison

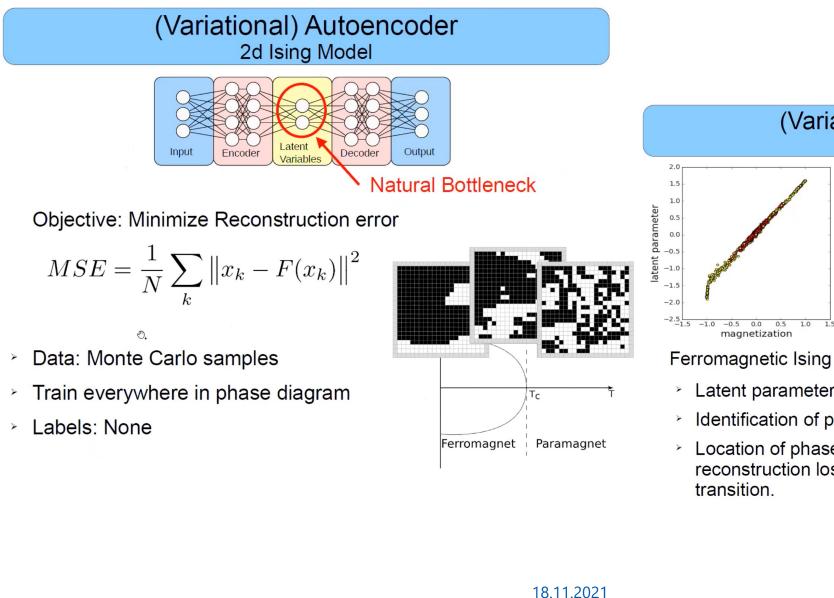
- Benchmarks: Ngyuen, Feynman
- Metrics
 - Recovery rate
 - Noise-resistance
 - Data-size dependence

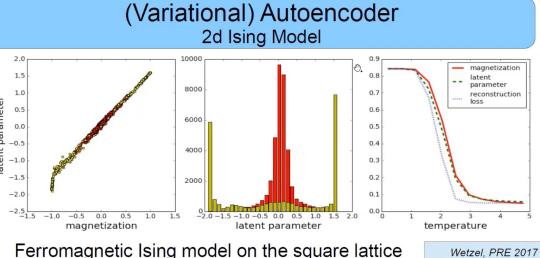
Name	Expression	Dataset I	Dataset II
Nguyen-1	$x_1^3 + x_1^2 + x_1$	U(-1, 1, 20)	U(-1, 1, 200)
Nguyen-2	$x_1^4 + x_1^3 + x_1^2 + x_1$	U(-1, 1, 20)	U(-1, 1, 200)
Nguyen-3	$x_1^5 + x_1^4 + x_1^3 + x_1^2 + x_1$	U(-1, 1, 20)	U(-1, 1, 200)
Nguyen-4	$x_1^6 + x_1^5 + x_1^4 + x_1^3 + x_1^2 + x_1$	U(-1, 1, 20)	U(-1, 1, 200)
Nguyen-5	$\sin(x_1^2)\cos(x_1) - 1$	U(-1, 1, 20)	U(-1, 1, 200)
Nguyen-6	$sin(x_1) + sin(x_1 + x_1^2)$	U(-1, 1, 20)	U(-1, 1, 200)
Nguyen-7	$log(x_1+1) + log(x_1^2+1)$	U(0, 2, 20)	U(0, 2, 200)
Nguyen-8	$sqrt(x_1)$	U(0, 4, 20)	U(0, 4, 200)
Nguyen-9	$\sin(x_1) + \sin(x_2^2)$	U(0, 1, 20)	U(0, 1, 200)
Nguyen-10	$2sin(x_1)cos(x_2)$	U(0, 1, 20)	U(0, 1, 200)
Nguyen-11	$x_1^{x_2}$	U(0, 1, 20)	U(0, 1, 200)
Nguyen-12	$x_1^4 - x_1^3 + 0.5x_2^2 - x_2$	U(0, 1, 20)	U(0, 1, 200)

- Notable players
 - Deep Symbolic Regression, Petersen et al. 2020
 - Al Feynman, Urdescu, Tegmark 2020



Unsupervised approach

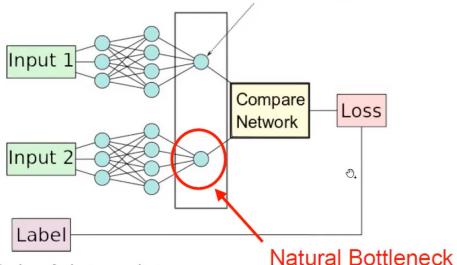




- Latent parameter corresponds to magnetization
- Identification of phases: Latent representations are clustered
- Location of phases: Magnetization, latent parameter and reconstruction loss show a steep change at the phase transition.

Similarity finding

Siamese Neural Networks

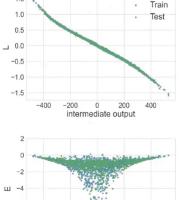


Latent Representation

Siamese Neural Networks Particle in Gravitational Potential

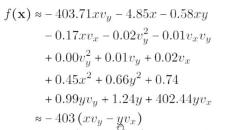
Results:

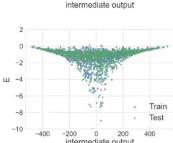
Training accuracy : 98% Test accuracy : 97%



1.5

Interpretation by polynomial regression 2 on latent representation:

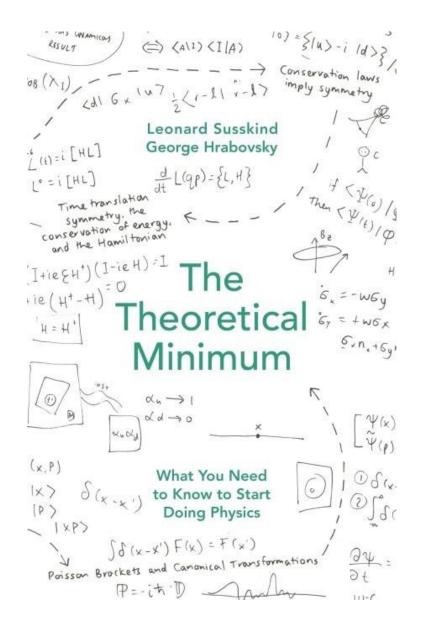




Network has learned the angular momentum to infer its prediction.

- Input : Pair of data points
- Label : same / different >
- Network pair contains identical neural networks with shared weights Wetzel, Melko, Scott, Panju, Ganesh, PRR 2020

Looking to physics for inductive bias



Inductive biases are needed to make learning tractable, even in data-rich domains.

 But the lesson seems to be that we should make the inductive bias as general as possible.
 See: Sutton 2019 - The Bitter Lesson

Example:

- Forces are summed at each receiver
- Message are summed at each receiver
- In a 2D simulation the forces are 2D

- ...

– 2D messages => messages = forces?

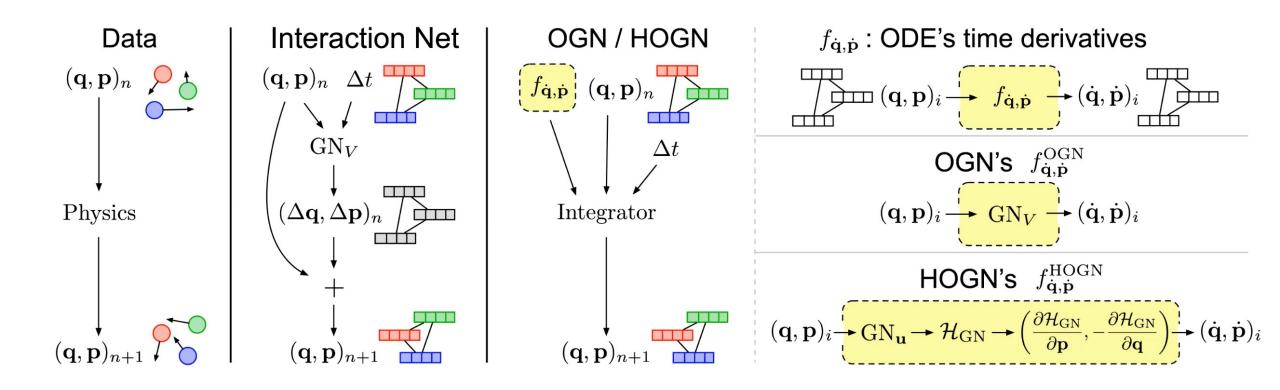
Hamiltonian Systems

- Generalized coordinates **q** and conjugate momenta **p**:
- Hamiltonian (usually corresponds to system total energy: T + V)
- Evolution equations

$$rac{\partial \mathcal{H}}{\partial q^j} = - \dot{p}_j \quad , \quad rac{\partial \mathcal{H}}{\partial p_j} = \dot{q}^j$$

 $p = rac{\partial L}{\partial \dot{q}}.$ $H = \sum_{i=1}^n \dot{q}_i rac{\partial L}{\partial \dot{q}_i} - L$

Hamiltonian ODE Graph Network

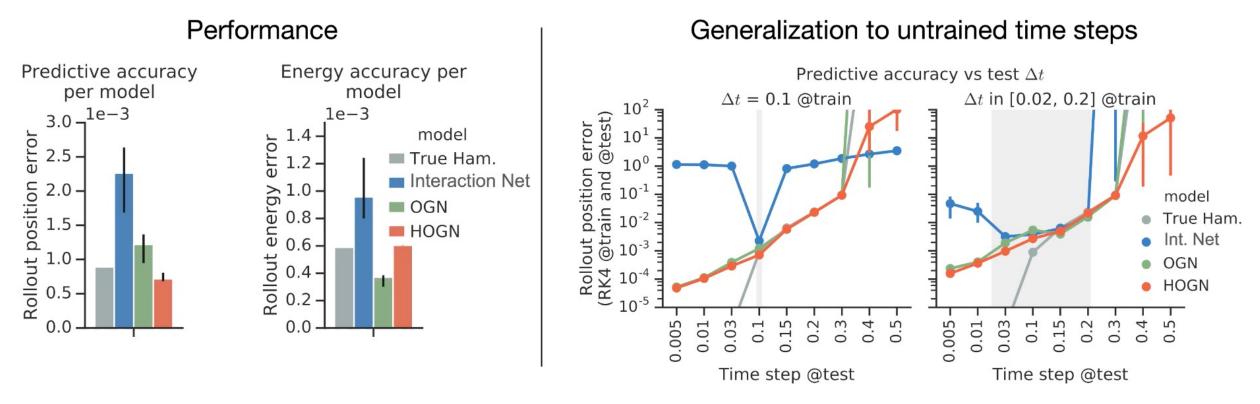


Sanchez-Gonzalez et al., 2019, arXiv/NeurIPS 2019 workshop

https://owncloud.gwdg.de/index.php/s/dylt83KE9uN8e6f

18.11.2021

Hamiltonian ODE Graph Network

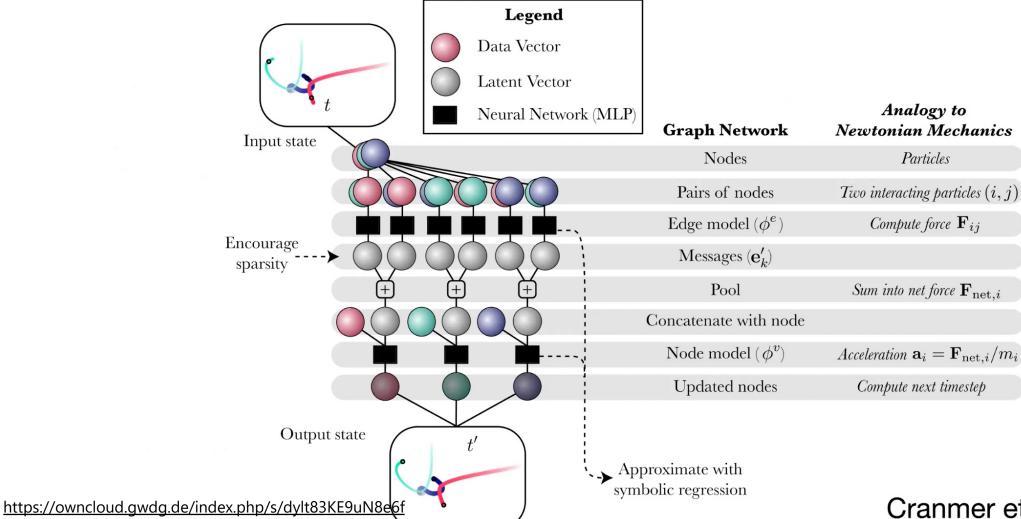


- OGN and HOGN used RK4 integrator (we also tested lower order RK integrators)
- We also tested symplectic integrators, and found HOGN has better energy accuracy/conservation

Sanchez-Gonzalez et al., 2019, arXiv/NeurIPS 2019 workshop

Discovering symbolic physics equations

Because the GN-based learned simulator is structured in a way that has correspondences to physical mechanics, we can interpret the functions and variables in physical terms

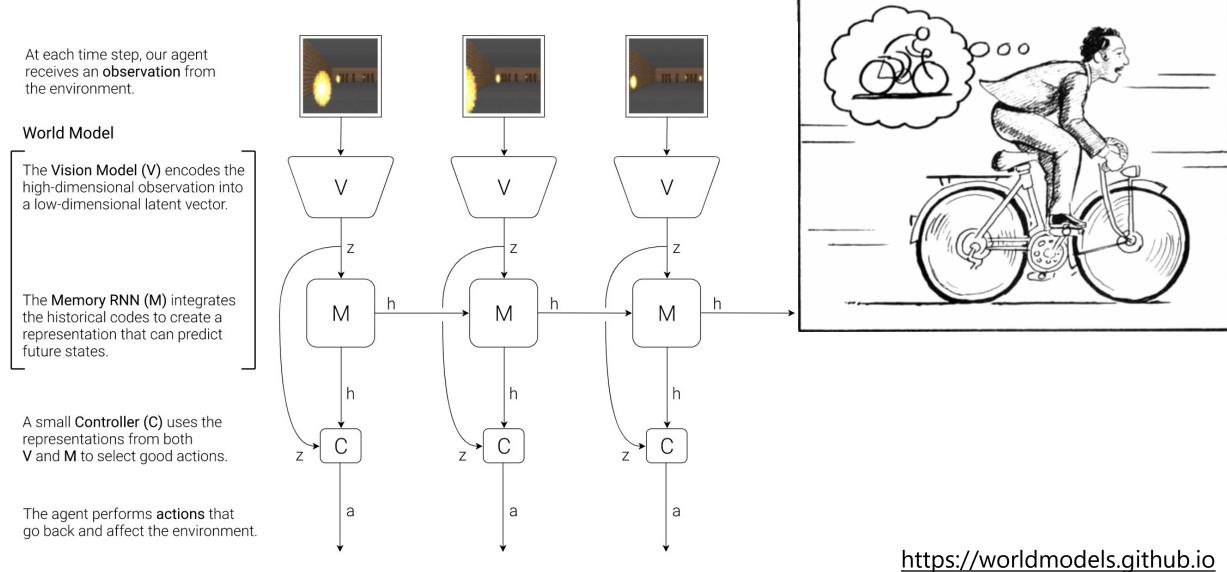


Cranmer et al., NeurIPS 2020

Simulation-based approach to discovery

- Reinforcement learning
- World-model
- Sleep-Wake cycle
- Simulation-based inference

World Model

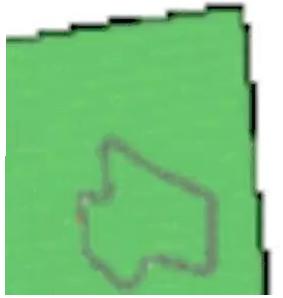


Our agent consists of three components that work closely together: Vision (V), Memory (M), and Controller (C).

World model procedure illustration

1. Collect 10,000 rollouts from a random policy.

- 2. Train VAE (V) to encode each frame into a latent vector $z \in \mathcal{R}^{32}$.
- 3. Train MDN-RNN (M) to model $P(z_{t+1} \mid a_t, z_t, h_t)$.
- 4. Evolve Controller (C) to maximize the expected cumulative reward of a rollout.

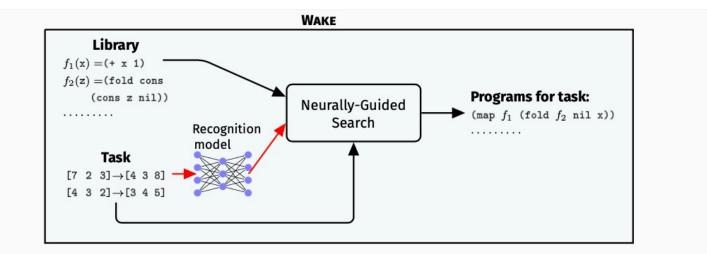


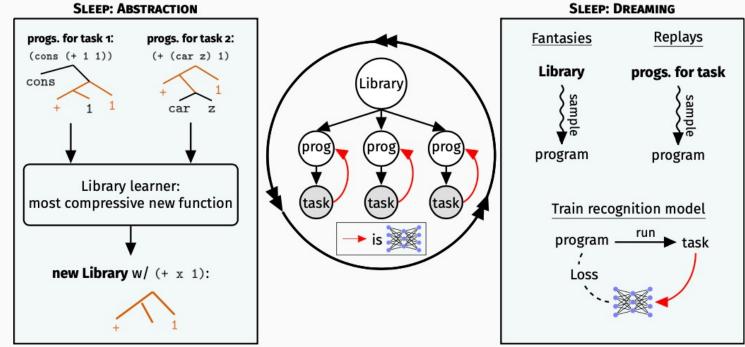
Actual observations from the environment.

What gets encoded into z_t .

https://worldmodels.github.io/assets/mp4/carracing_vae_compare.mp4

Dream Coder





https://dl.acm.org/doi/10.1145/3453483.3454080

DreamCoder Domains

List	Proces	ssing
------	--------	-------

Sum List

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \rightarrow 6$ $\begin{bmatrix} 4 & 6 & 8 & 1 \end{bmatrix} \rightarrow 17$

Double

Text Editing Abbreviate

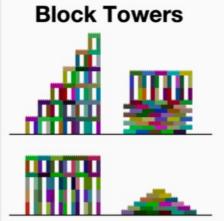
Allen Newell \rightarrow A.N. Herb Simon \rightarrow H.S.

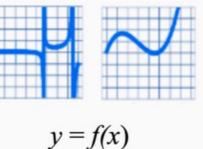
Drop Last Three shrdlu \rightarrow shr shakey \rightarrow sha

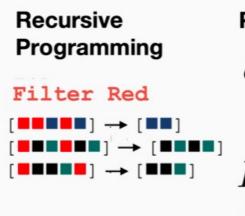
\$4.50

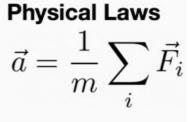
Phone numbers (555) 867-5309 (650) 555-2368 Currency \$100.25

LOGO Graphics





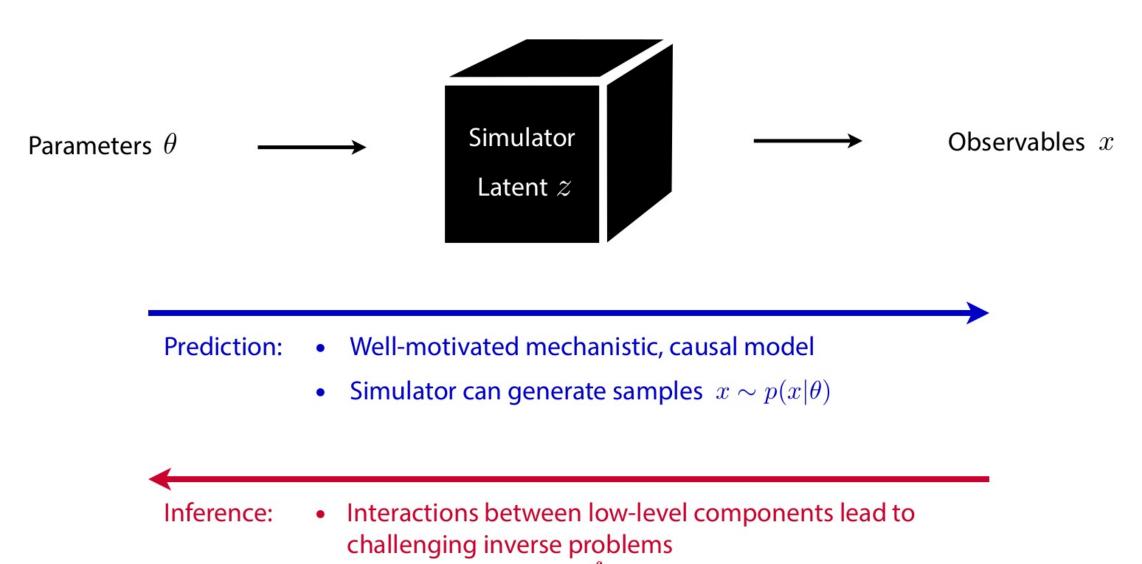




 $ec{F} \propto rac{q_1 q_2}{ec{r}ec{l}^2} \hat{r}$

Ellis, Wong, Nye, ..., Solar-Lezama, Tenenbaum. PLDI 2021.

Simulation-based inference



• Likelihood
$$p(x|\theta) = \int_{18.1} dz \ p(x, z|\theta)$$
 is intractable

Simulation-based inference

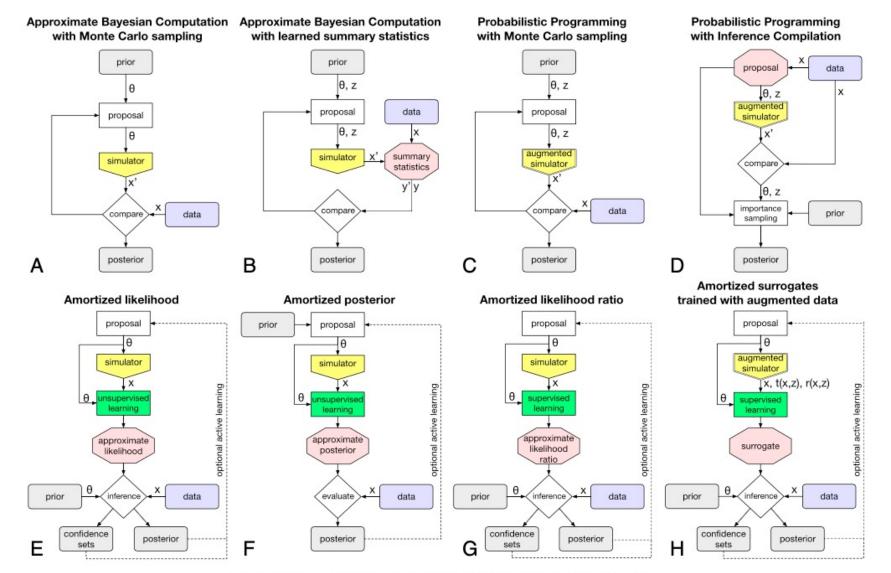


Fig. 1. (A–H) Overview of different approaches to simulation-based inference.

https://doi.org/10.1073/pnas.1912789117

18.11.2021

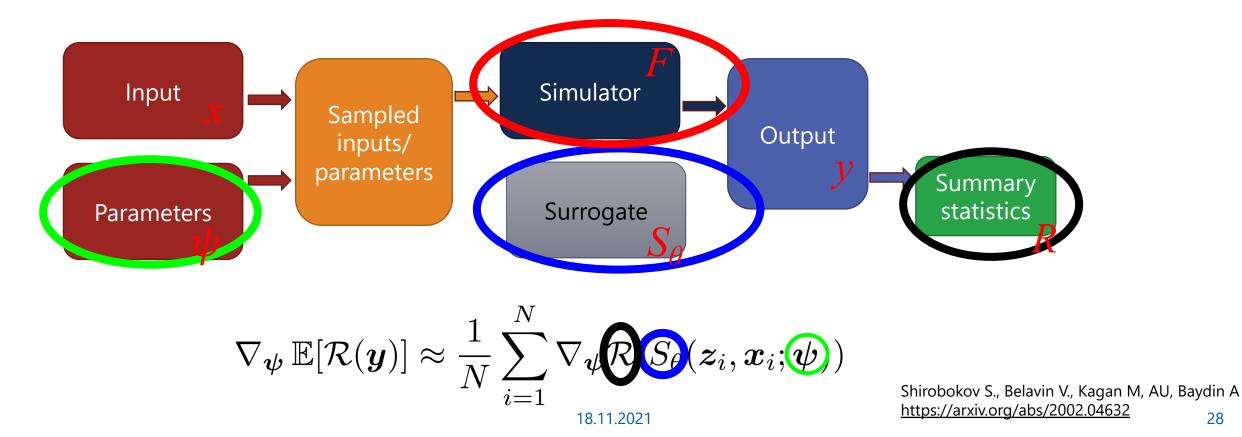
TL;DR:

Let's approximate a stochastic black-box with a local generative surrogate.

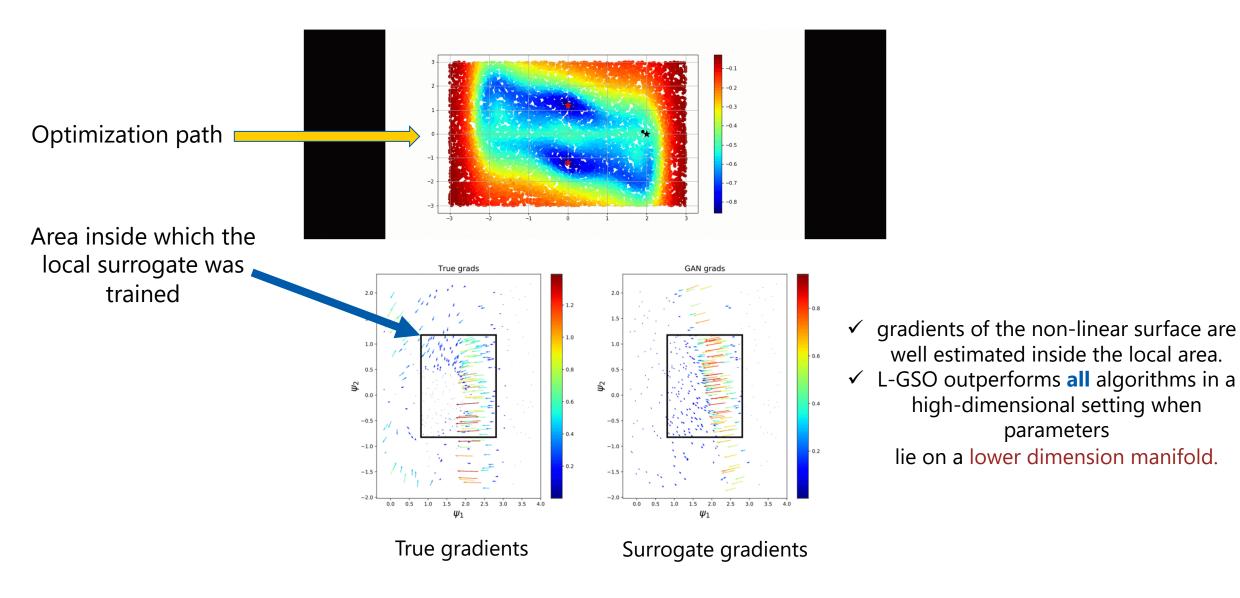
This allows computing gradients of the objective w.r.t. parameters of the blackbox.

28

$$\mathbb{E}[\mathcal{R}(\boldsymbol{y})] = \int \mathcal{R}(\boldsymbol{y}) p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\psi}) q(\boldsymbol{x}) d\boldsymbol{x} d\boldsymbol{y} \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{R}[\boldsymbol{x}_{i};\boldsymbol{\psi})] \quad \boldsymbol{y}_{i} = F(\boldsymbol{x}_{i};\boldsymbol{\psi}) \sim p(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\psi}),$$
$$\boldsymbol{x}_{i} \sim q(\boldsymbol{x})$$

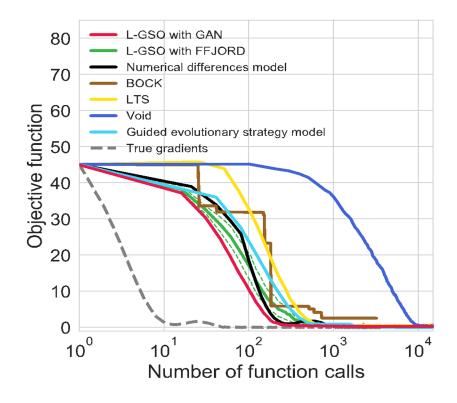


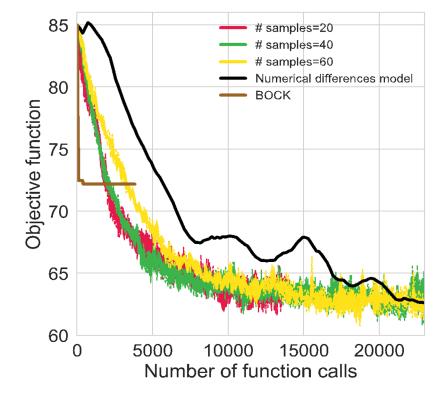
Key point: training **local** generative surrogate



18.11.2021

Results on high-dimensional problems with low-dimensional manifold





Nonlinear Three Hump problem, 40dim Neural network weights optimization, 91dim

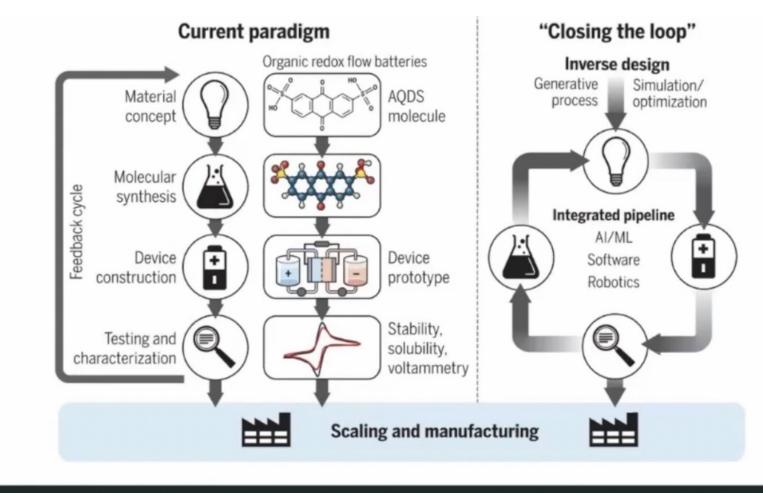
L-GSO is free from explicit variational distribution model

L-GSO outperforms all algorithms in a high-dimensional setting with lower dimension manifold.

1. Liu, Shuang, and Kamalika Chaudhuri. "The inductive bias of restricted f-gans." arXiv preprint arXiv:1809.04542 (2018)

2. Uppal, Ananya, Shashank Singh, and Barnabás Póczos. "Nonparametric density estimation & convergence rates for gans under besov ipm losses." Advances in Neural Information Processing Systems. 2019.

Closing the loop for material science

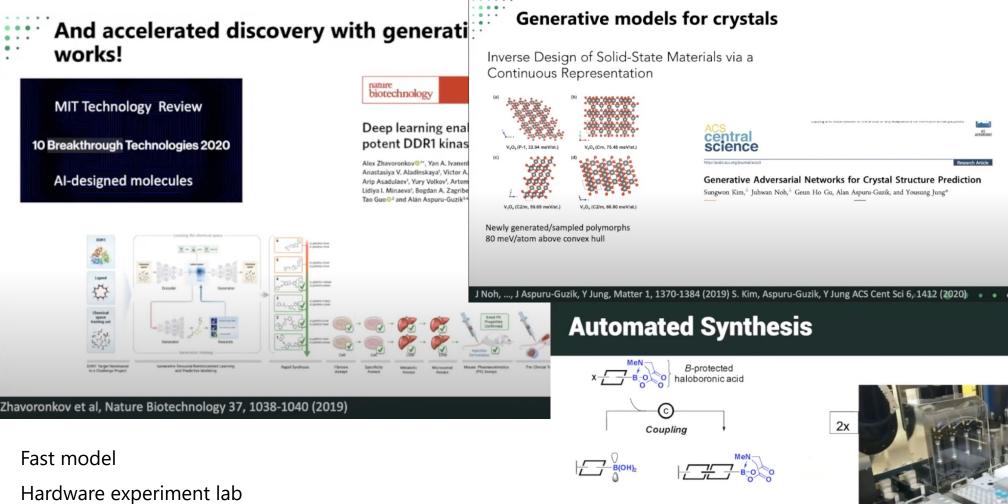


Sánchez-Lengeling and Aspuru-Guzik Science 2018, 361, 360.

https://www.youtube.com/watch?v=4WfG7_4B7mM

18.11.2021

Self-driving labs, Alan Aspuru-Guzik



Optimization / comparison

https://www.youtube.com/watch?v=4WfG7_4B7mM

Heating and vortex under reflux and inert gas for 16 hours

1 coupling - 16 reactions in parallel

and catalyst

3.

Adding the solvent

2. Solid dispensing: starting materials, base,

Notable examples

Robot Scientists,

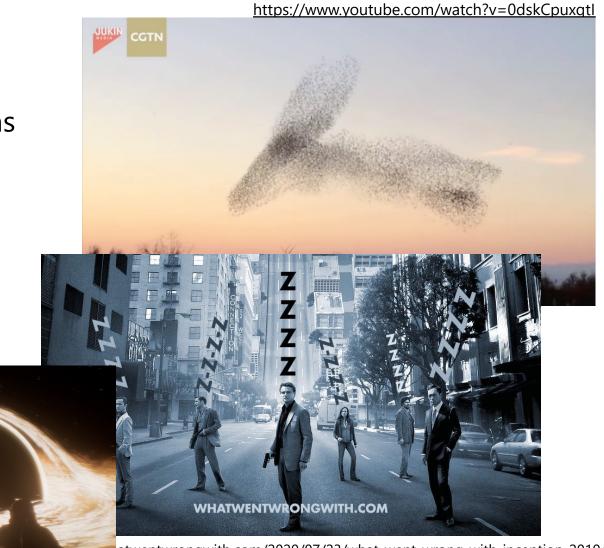
https://owncloud.gwdg.de/index.php/s/vZJiBu7PviP24i3

- Adam (2009)
- Eve
- Genesis
- Kebotix, <u>https://www.kebotix.com/</u>
- Ada, <u>https://www.science.org/doi/10.1126/sciadv.aaz8867</u>
- KIWI, <u>https://kiwi-biolab.de/</u>

Why AI + Physics?

Challenges for describing complex systems

- Emergence
- Dark matter search
- Quantum vs classical gravity
- Self-driving research



atwentwrongwith.com/2020/07/23/what-went-wrong-with-inception-2010/

https://www.artstation.com/artwork/AqawDV

Open questions

- Which known scientific paradigms/frameworks can be helpful for building interpretable forward models?
 - Construction theory, Gauge theory, Renormalization theory, Quantum field theory?
- Can we leverage different computation model to speed-up inverse model design?
 - Quantum computing
- Can inverse models be developed on top of trained forward models?
- To what extend a system semantic description can be helpful?
 - How to merge semantic descriptions with differentiable optimization routines?
- How useful can multi-scale hybrid simulation be?

Towards Physics-enabled AI

Governing frameworks

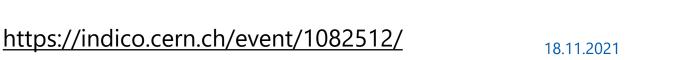
- Scale-invariance via emergent properties identification, Barnett L, Seth A <u>https://arxiv.org/abs/2106.06511</u>
- Constructor theory (Deutsch, David. "Constructor theory." Synthese 190 (2013): 4331-4359, Chiara Marleto, <u>https://arxiv.org/pdf/1608.02625.pdf</u>)

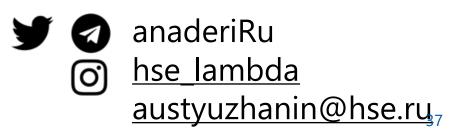
Building blocks

- Hypothesis generative model
- Inductive Bias Library for representation and forward model
- Dynamic Representation Learning
 - Emergent properties detection / analysis
- Simulation-Exploration cycle / active learning
 - Model ensembling
- Inverse model construction / interpretation
- Hypothesis testing / verification

Conclusion

- New technologies demand new research approaches that can be dramatically improved with data-driven methods (machine learning)
- Interpretability is a tricky matter
 - Decision trees, Robustness tests, Generalization, Symbolic regression
- Physical principles aid towards complex system analysis
 - Emergent properties
 - Invariant search
 - Forward / inverse model construction / calibration
 - ...
- Ultimate goal: self-driving research
 - Some progress is already made, but still a long road to go
- Open for collaboration / internship





Towards a Theory of Evolution as Multilevel Learning,

- P1.Loss function. In any evolving system, there exists a loss function of time-dependent variables that is minimized during evolution.
- P2.Hierarchy of scales. Evolving systems encompass multiple dynamical variables that change on different temporal scales (with different characteristic frequencies).
- P3.Frequency gaps. Dynamical variables are split among distinct levels of organization separated by sufficiently wide frequency gaps.
- P4. Renormalizability. Across the entire range of organization of evolving systems ,a statistical description of fasterchanging (higher frequency) variables is feasible through the slower-changing (lower frequency) variables.
- P5.Extension.Evolving systems have the capacity to recruit additional variables that can be utilized to sustain the system and the ability to exclude variables that could destabilize the system.
- P6.Replication. In evolving systems, replication and elimination of the corresponding information processing units can take place on every level of organization.
- P7.Information flow. In evolving systems, slower-changing levels absorb information from faster-changing levels during learning and pass information down to the faster levels for prediction of the state of the environment and the system itself.

Vanchurin V, et al https://arxiv.org/abs/2110.14602

18.11.2021

Symbolic regression problem statement

1. Given a dataset $\mathcal{D} = (X_d, Y_d), X_d \subset \mathbb{R}^m, Y_d \subset \mathbb{R}$

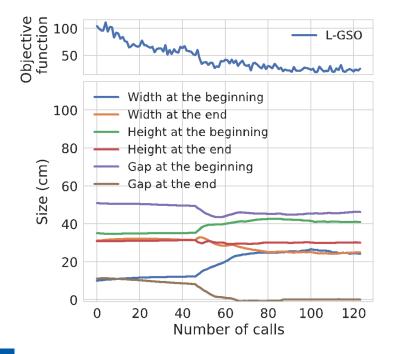
Find a mathematical formula y = f(x) approximating \mathcal{D} :

 $\forall (x_i, y_i) \in \mathcal{D} : y_i \approx f(x_i)$

2. Given a dataset $\mathcal{D} = (X_d, Y_d), X_d \subset \mathcal{X} \subset \mathbb{R}^m, Y_d \subset \mathcal{Y} \subset \mathbb{R}$

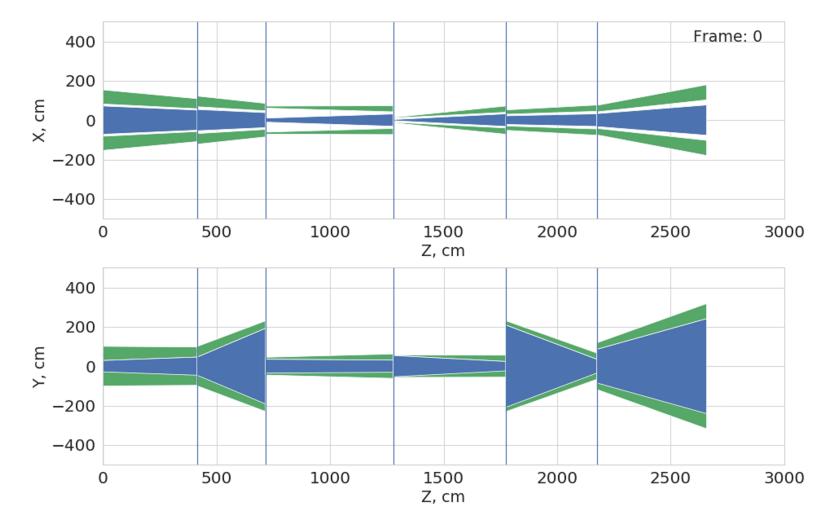
Choose a point $x \in \mathcal{X}$ to add to the dataset with corresponding y

Design optimisation in 42 dimensional space of physics simulator



L-GSO improves previous results obtained with BO with the same computational budget.

New design is 25% more efficient.



Shirobokov S., Belavin V., Kagan M, AU, Baydin A., NeurIPS'20 paper <u>https://arxiv.org/abs/2002.04632</u>

18.11.2021

Active Learning: Next Points

