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Shameless plug

» Development and application of Machine Learning methods for
solving tough scientific challenges;

» Member of collaborations LHCb, SHiP OPERA, NEWSdm, KIWI

» Research Project examples:
— Storage/speed optimization for LHCb triggers; hse_lambda

LAMBDA - HSE

— Particle identification algorithms;
— Optimization of detector devices;

— Fast and meaningful physical process simulation.
» Co-organization of ML challenges: Flavours of Physics, TrackML
» 7 Summer schools on Machine Learning for High-Energy Physics

> Open for interns, graduate students and post doc researchers!

18.11.2021



Motivation

2100 WARMING PROJECTIONS Qs
Emissions and expected warming based on pledges and current policies Tracker
- Sept 2020 update

Warming projected

150 by 2100

— Baseline
4.1-48°C

100

Current policies

Global greenhouse gas emissions GtCOze / year

- 2.7-31C
Historical N — Pledges & Targets

— 2.4-2.7°C
. 0 — .; — ======u; . 2 Cconsistent

> Growing demands for new: ! s
1.5°C consistent

1.3°C
— TeChnOlOg|eS (manUfaCtUI‘lng %1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

processes), materials, drugs, ...

https://climate.mit.edu/posts/ten-big-global-challenges-technology-could-solve

18.11.2021 3
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Why Al + Physics?

> Physics has been the strong inspiration source for Al
— Simulated annealing, Energy GANs, Langevin gradient descent, diffusion models, ...

> Physicists deal with the Universe on the widest range of scales (from quarks
to galaxies)

— Approaches that easy to change the scale of the object under the study

— Natural account for uncertainty in data and in models

» Has good tradition on compressing empirical facts/information into succinct
principles
— Powerful theoretical foundation + experimental verification tradition

> Rich mathematical language for natural phenomena description
» Strong real phenomena simulation experience, methods and tools

18.11.2021



[ J
W h y A I + P h yS I C S ? https://www.youtube.com/watch?v=0dskCpuxqatl

Challenges for describing complex systems

>

>

Dark matter search

Quantum vs classical gravity

Self-driving research

WHATWENTWRONGWITH.COM

e
2 s o
=

atwentwrongwith.com/2020/07/23/what-went-wrong-with-inception-2010/

https://www.artstation.com/artwork/AgawDV

18.11.2021 5


https://www.youtube.com/watch?v=0dskCpuxqtI
https://whatwentwrongwith.com/2020/07/23/what-went-wrong-with-inception-2010/
https://www.artstation.com/artwork/AqawDV

Commonly used ML tasks and algorithms

[ Type of Data

]

[ Type of Machine Learning ]

r

Type of Algorithm

\

Examples

N 7

6ructured (Tabular)

Data
Sources:experimental
and/or computational
databases.

Examples: AFLOW?34,
Materials Project3,
JARVIS®8, ICSDSS,
Pauling File®!

(Unstructured Data
Sources:images,
spectra, text
Examples:
Imaging/spectroscopic
experiments107.110,
C:ientiﬂc articlesi®

Supervised Learning \
Uses labeled data.

Divided into classification
(target properties with
discrete categories) and
regression (target prop-
erties are continuous) /

Unsupervised Learning
Used to discover latent

structure in unlabeled
data

fParametric models
Fixed complexity (e.g. analytic) models

Prosand Cons: Interpretable, but not flexible

™ | [ Ref.74: Trained gradient )
boosting model to predict
the topology of a material
based on composition and

AExarml&s: Linear and Logistic regression

/ |\ crystal symmetry. )

(Non:garametrlc models
Complexity grows with the data

Examples: Random Forest, Gradient Boosting
Pros and Cons: Powerful, but not easily
kinterpreted

[ Ref. 88: Used random forest |
to predict superconducting

| 7. based on composition. )

Ref.81: Trained gradient )
boosting classifier on DFT

data to predict stability of

(Deeg Learning models:

Can learn features from both structured and
unstructured data

Qf training data

Example: Convolutional Neural Network (CNN)
Pros and Cons: Very powerful, but require a lot

\_potential 2D materials 7

(Ref.107:Used CNNon )
SISTM image data to find

the order parameter typein
\_cuprate materials. 3

Ref.110: Applied CNNto )

~

Dimensionality Reduction
Project high-dimensional data onto low-

dimensional space preserving latent structures

Examples: PCA, NMF, t-SNE

XAS spectral data to find
potential topological
\_materials. >

Ref.87: Used NN modelto
predict crystal structure

J
~

Clustering
Find intrinsic groups in unlabeled data
Examples: K-Means, Hierarchical Clustering

from composition. Cluste-

red model representations

to find potential topolo-

gical materials. )

18.11.2021
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Machine Learning (ML) challenges

> Incremental data handling

» Data representation

— Account for noise

» Forward modelling (fast simulation)
— Generative model, differentiable
— Interpretability

— Inductive bias

> Inference (inverse problem)

— Physical

18.11.2021



Model interpretation

Humans
» Model-agnostic
— Example-based o Y 5
— Global: how features affect the prediction on average m%rw%?abim/’/’?” /
— Local: explain individual predictions o L.
» Model-centric, e.g., for neural networks:

— Learned Features: What features has the neural network learned?

— Pixel Attribution (Saliency Maps): How did each pixel contribute to &
a particular prediction?

— Which more abstract concepts has the neural network learned? o
— Adversarial Examples: How can we trick the neural network? o
— How influential was a training data point for a certain prediction?

World

https://christophm.qgithub.io/interpretable-ml-book/agnostic.html
18.11.2021 8




Symbolic regression problem statement

Mysterious
Environment

Explored
Environment

Laws: statements y=f(x), f - symbolic expression
1. Find the formula that best fits the given dataset
2. Add the most informative data to the dataset

18.11.2021



Basic approach

+
v
/
/N
5 sin
Figure 2: Formula tree for y = -°— 4+«

six

Pretrain the VAE

Randomly
generate a set of
formulas

18.11.2021

Sample a set of
formulas using
VAE

Retrain the VAE
on the chosen
formulas from the
last M epochs

&

Optimize
constants

Choose P% of
best formulas

10



Active Learning

» Add points to the training sample based on evaluation of the best trained formula

— Experiments are expensive
— Faster discovery

— Less data, less
computational resources

» Possible approaches:

— Random sampling - choose a
new point randomly

— Full variance - choose the
point with max variance based
on the whole retraining set

0.10 1
0.08 1

x 0.06 1

y—

1 0.04-
0.02 -

0.00 1

x in (0, 0.1)

V¥ candidate y=x
target y=sin(x) g;
¥ candidate y=sin(x) + 0.01 X ¥
XW
w

%‘.:
X
ﬂ

X
w

Xy
X X

a
wr
v

0.000 0.025 0.050 0.075 0.100
X

y=f(x)

— Top-10 variance - choose the point with max variance based on the top-10 generated formulas

18.11.2021

x in (0, 5)
1 ¥ candidate y=x v'
target y=sin(x) Vv
{4 X candidate y=sin(x) + 0.01
v
v
v
v
X X
X
&
X
200K
0 1 2 3 5

11



Performance comparison

>

>

>

Benchmarks: Ngyuen, Feynman

Metrics

— Recovery rate

— Noise-resistance

— Data-size dependence

Notable players

— Deep Symbolic Regression, Petersen et al. 2020

— Al Feynman, Urdescu, Tegmark 2020

18.11.2021

Name Expression Dataset | Dataset 11
Nguyen-1 T3+ 27 + T3 U(-1,1,20) | U(-1,1,200)
Nguyen-2 i+ 15 + 25 + 1) U(-1,1,20) | U(-1,1,200)
Nguyen-3 s+t +ai+ 1 U(-1,1,20) | U(-1,1,200)
Nguyen-4 | 28+ 23 +zi+ i+ 25+ | U(-1,1,20) | U(-1,1,200)
Nguyen-5 sin(z7)cos(zy) — 1 U(-1,1,20) | U(-1,1,200)
Nguyen-6 sin(xy) + sin(zy + z7) U(-1,1,20) | U(-1,1,200)
Nguyen-7 log(zy + 1) + log(x% + 1) U(0,2,20) U(0,2,200)
Nguyen-8 sqrt(xy) U(0,4,20) U(0,4,200)
Nguyen-9 sin(xy) + sin(x3) U(0,1,20) U(0,1,200)

Nguyen-10 2sin(x)cos(z2) U(0,1,20) U(0,1,200)
Nguyen-11 z7? U(0,1,20) U(0,1,200)
Nguyen-12 x} — x5 + 0.523 — x4 U(0,1,20) U(0,1,200)
80
9
Eso
e
g
g —e-: Robo_200
° g g:t?c;_zzoo M —
=o' DSO_200 |
° 0 2 4 6 8 10

Noise level [%]

12



Unsupervised approach

@ L N
(Variational) Autoencoder
g 2d Ising Model )
| (Variational) Autoencoder )
Latent R\ pacodsr | Oupu L 2d Ising Model )

2.0 10000 0.9

R - magnetization
0.8 2 latent
2 parameter

n 0.7 k T reconstruction
loss

N\ Natural Bottleneck

1.0 8000

0.5

Objective: Minimize Reconstruction error

1 2
MSE = — ; |2k — F(zy)||

6000
0.0

-0.5
4000

-1.0

latent parameter

=139 2000

:22215 -1.0 -0.5 0.0 0.5 1.0 15 PZO—F”STTTIE)HSAOO Oﬂimnl-lo 1.5 2.0 ZZO 1 2 3 - 5
o, » . mégnefizatibn . - - - Ia.ten.t pérarﬁetér . . temperature
- Data: Monte Carlo samples Ferromagnetic Ising model on the square lattice Wetzel, PRE 2017
- Train everywhere in phase diagram }Tc i - Latent parameter corresponds to magnetization
. Labels: None e - |dentification of phases: Latent representations are clustered
EHBIMEgRAEE | RAraTiagpet - Location of phases: Magnetization, latent parameter and
reconstruction loss show a steep change at the phase
transition.

18.11.2021 14



Similarity finding

[

Siamese Neural Networks

N 4

Input 1 >O\

Compare

Network Loss

Input 2

Label \

N\

- Input : Pair of data points

- Label : same / different

Natural Bottleneck

Latent Representation

- Network pair contains identical neural networks with shared

weights

Wetzel, Melko, Scott, Panju, Ganesh, PRR 2020

Siamese Neural Networks
Particle in Gravitational Potential

18.11.2021

Results:
3 . rain
Training accuracy : 98% o -
0.5
Test accuracy : 97% Y

- Interpretation by polynomial regression <« e o w0

intermediate output

on latent representation:

f(x)»—-403.71xv, — 4.85x - 0.58zy
-0.17zv, - 0.020} - 0.01v,v,
+0.000; +0.01v, +0.020,
+0.452% + 0.66y° +0.74
+0.99yv, +1.24y + 40244y v, -10
~—403 (zv, - QI{)["")
—

=L,

- Network has learned the angular momentum to infer its
prediction.

- Train
« Test

-400 -200 0 200 400
intermediate output

15



Looking to physics for inductive bias

- rwy Wimicay | . . 0) =<, | >
oy /& A\DLT SIUD =i 1dy>
\. 5
SRS w5 W= (Ungg,voga" "Qw; /|
ok | | - = ) )
BN T T LY Y Sy
s\ 6 S ¥ e
/ = ,,r 5 A,%
N Leonard Susskind v
1 /
P George Hrabovsky
gy -+
= - d it N<5i u2 / A
r‘:',‘i‘r‘L‘J '-:’__Jrl-?k,"‘
L - Jt v ™~ / &
TinAL "’YD"".'O:M J/ Tr’-\‘_ ~ ) g) /
vt VY e e TV, !
*Y Hov of eneryy: ) 7
conse/ Vo | ot o A2 s

H MH.
ond T2 o

Lep)UEP T The 17
e %) . =gy
| Theoretical & -+,

M e ES ,6\, n +¢.,
[ ® N O N
! B \ g i \ S
2] ‘|‘ oL o = 0 i : I"./ v
a0y — |5
B - \ f)
P) ey P
5 What You Need | | O
X7 0 (, . to Know to Start ~
R4 3 X ) : a ) 13, ,/ | (
) Doing Physics : p Jd
o %Py
\ Chen ') Fil) = F ) /
. ) g (x-¥% ) T\ : . /
P 5y %votkeﬂ r.y\d (,o\-"m\\(fh‘l T'VS!WNGHQA’
ansso 3
M-._ % m _
f (AL =" | Aol

» Inductive biases are needed to make
learning tractable, even in data-rich
domains.

» Butthe lesson seems to be that
we should make the inductive bias
as general as possible.

See: Sutton 2019 - The Bitter Lesson

» Example:

— Forces are summed at each receiver

— Message are summed at each receiver
— In a 2D simulation the forces are 2D

— 2D messages => messages = forces?

18.11.2021
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Hamiltonian Systems

» Generalized coordinates q and conjugate
momenta p:

» Hamiltonian (usually corresponds to
system total energy: T + V)

> Evolution equations

M _ oM,
aqj_ pj ) —q

18.11.2021
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Data

(@,p)n 2 4

Physics

v —0O
(Qa p)n+1 ?b

Hamiltonian ODE Graph Network

Interaction Net
(a,p)n At

N/

GNy

l

(Aq, Ap)fréﬁm
l

_|_

(a, Pl)nﬂiﬁ

https://owncloud.gwda.de/index.php/s/dyIt8 3KEQuN8ebf

OGN / HOGN fap . ODE'’s time derivatives

\{C_l_ri. (q,p E:ED EIE:ED QP)i— fap — (Qa )IE]I]
\ | A oons 5
Integrator (q, P)z—l> GNy — (qa P

_________________________________

Sanchez-Gonzalez et al., 2019, arXiv/NeurlPS 2019 workshop

18.11.2021 18



Hamiltonian ODE Graph Network

Performance Generalization to untrained time steps
Predictive accuracy Energy accuracy per Predictive accuracy vs test At
pe; mo3de| : m;)del 52 At = 0.1 @train At in [0.02, 0.2] @train
3.0 e— S | ;
- . odis model o 31”_), 10!
= 2.0 =124 ™ True Ham. VO 440
= o Interaction Net | 52
nteraction Ne
< 2.0 >1.0- = = 5 model
g = ™ OGN D
215 o 0.84 O .= 102 » True Ham.
& 5 = HOGN e e Int. Net
= 1.0 = 907 3®10° |
2 1.0 = 1= ] e OGN
o 0.4 - < 104
o = A e HOGN
3 03 O 0.2 4 Cx s :
o (o'l : 10 1 I 1 1 1 I I 1 | | I 1 1 | I 1 1 1
0.0 - 0.0 - N o MmN MmN W = MmN M SN
8 g g o ; o o o o 8 g g o g o o o o
o o
Time step @test Time step @test

« OGN and HOGN used RK4 integrator (we also tested lower order RK integrators)
» We also tested symplectic integrators, and found HOGN has better energy accuracy/conservation

https://owncloud.gwdqg.de/index.php/s/dyIt8 3KEQuN8e6f

Sanchez-Gonzalez et al., 2019, arXiv/NeurlPS 2019 workshop
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https://owncloud.gwdg.de/index.php/s/dylt83KE9uN8e6f

Discovering symbolic physics equations

Because the GN-based learned simulator is structured in a way that has correspondences to
physical mechanics, we can interpret the functions and variables in physical terms

Analogy to
Graph Network Newtonian Mechanics
Input state
Nodes Particles

Pairs of nodes Two interacting particles (%, 7)

Edge model (¢°) Compute force ¥
Encourage M ;
sparsity sssagesiey)
Pool Sum nto net force Fret ;
Concatenate with node

Node model (") Acceleration a; = Fiet i /m;

Updated nodes Compute next tumestep

Output state

t/

o ! . .
> Approximate with

symbolic regression

https://owncloud.qwdg.de/index.php/s/dylt83KESUNB 6! */ Cranmer et al., NeurlPS 2020




Simulation-based approach to discovery

> Reinforcement learning
> World-model
> Sleep-Wake cycle

» Simulation-based inference

18.11.2021
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World Model

At each time step, our agent
receives an observation from
the environment.

World Model

— - Y Y 4
A
A

<

The Vision Model (V) encodes the
high-dimensional observation into \V/ X/ V
a low-dimensional latent vector.
Z Z Z
(r (1
h h
Evl

>LM

<

=

<

The Memory RNN (M) integrates
the historical codes to create a
representation that can predict

future states.
h h h

A small Controller (C) uses the v v y
representations from both [Cj Ecj EC
V and M to select good actions. Z Z z
The agent performs actions that a a a
go back and affect the environment.

v A4 A\ 4

https://worldmodels.github.io

Our agent consists of three components that work closely together:
Vision (V), Memory (M), and Controller (C). 22


https://worldmodels.github.io/

World model procedure illustration

1. Collect 10,000 rollouts from a random policy.
2. Train VAE (V) to encode each frame into a latent vector 2 eR:2.

3. Train MDN-RNN (M) to model P(z; 1 | a3, 2, hy).

4. Evolve Controller (C) to maximize the expected cumulative reward of a

rollout.

Actual qbservatlons from What gets encoded into z.
the environment.

https://worldmodels.github.io/assets/mp4/carracing vae _compare.mp4

18.11.2021 23
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Dream Coder

WAKE

Library
fi(x) =+ x 1)
f2(z) =(fold conms

(cons z nil))

[7 2 3]—»[4 3 8]
[4 3 2]—»[3 4 5]

Neurally-Guided

Recognition Search

Programs for task:
(map f; (fold f; nil x))

model

SRR

SLEEP: ABSTRACTION
progs. for task 1 progs. for task 2:
(cons (+ 1 1)) (+ (car z) 1)

l :

cons
SN
+ 11 car z

Library learner:

most compressive new function

v

new Library w/ (+ x 1):

https://dl.acm.org/doi/10.1145/3453483.3454080

SLEEP: DREAMING

Fantasies =~ Replays

Library progs. for task

9)dwes
9)dwes

program program

Train recognition model

program — " task

’
Loss </
\~ S
~ L % °
S

24


https://dl.acm.org/doi/10.1145/3453483.3454080

DreamCoder Domains

List Processing Text Editing Regexes LOGO Graphics
Sum List Abbreviate Phone numbers
U

[1 2 3] — 6 Allen t:lewell — A.N. (555) 867-5309 O L
[4 6 81]— 17 Herb Simon —H.S. (650) 555-2368
Double Drop Last Three Currency (Eg)

[1 2 3] - [2 4 6] shrdlu — shr $100.25 4237/
[4 5 1] — [8 10 2] shakey — sha $4.50

Block Towers Symbolic Regression Recursive Physical Laws

Programming . I sy
a = — E f%
Filter Red =
(NEEEE] — [HN] ‘
(AENEEN] —» [NEEN]

(NEEEE] — [EEE] F o 4192 .

.
712

Ellis, Wong, Nye, ..., Solar-Lezama, Tenenbaum. PLDI 2021. 25



Simulation-based inference

Parameters 6 > Simulator — Observables x
Latent 2

Prediction: e Well-motivated mechanistic, causal model

e Simulator can generate samples x ~ p(z|0)

Inference: e Interactions between low-level components lead to
challenging inverse problems

e Likelihood p(x|6) im/zdz p(x, z|0) is intractable

11.2021
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Simulation-based inferen

Approximate Bayesian Computation Approximate Bayesian Computation
with Monte Carlo sampling with learned summary statistics

prior l prior

ce

Probabilistic Programming

with Monte Carlo sampling

simulator summary

statistics

prior
0 0,z 0,z
proposal proposal [ data ] proposal
5] 0,z

I nte
snmulator

B C

Amortized posterior

Amortized likelihood

proposal  [---oosssmoooeeeo ' [ prior }—- proposal  fe--------mssneeeees :

approximate
likelihood

optional active learning

posterior

Amortized likelihood ratio

proposal [------ooooeeeooeeoo

]
X

D

Probabilistic Programming
with Inference Compilation

IW@‘I
simulator

0,z

nnpodance
sampling prior ]

Amortized surrogates

trained with augmented data

proposal L

| augmented
.. slmulator

optional active learning

c
£
[
o
[
B
Approximate &
likelihood § :
ratio =]
153
(=]
|

Fig. 1. (A-H) Overview of different approaches to simulation-based inference.

18.11.2021
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https://doi.orq/10.1073/pnas. 1912789117
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TL;DR:
Let’'s approximate a stochastic black-box
with a local generative surrogate.

This allows computing gradients of the
objective w.r.t. parameters of the black-
box.

1 y; = F(xi;1) ~ p(ylz; ),
~ 5 2 (EE@]

inputs/

parameters Summary
statistics

Shirobokov S., Belavin V., Kagan M, AU, Baydin A
https://arxiv.org/abs/2002.04632 )8
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https://arxiv.org/abs/2002.04632

Key point: training local generative surrogate

Optimization path

Area inside which the
local surrogate was
trained

True grads

0.0 0.5 1.0 15 20 25 3.0 35

Y1

True gradients

4.0

0.8

0.6

0.2

GAN grads

2.0 -2
. . - 08
15 . N

0.6

0.0 05 1.0 15 20 25 30 35 4.0

Y1

Surrogate gradients

18.11.2021

v' gradients of the non-linear surface are
well estimated inside the local area.
v L-GSO outperforms all algorithms in a
high-dimensional setting when
parameters
lie on a lower dimension manifold.

29



Results on high-dimensional problems with low-dimensional manifold

80 —— L-GSO with GAN 85\ T #samples=20
—— -GSO with FFJORD = #samples=40
= Numerical differences model # samples=60
70 — BOCK = Numerical differences model
LTS - 80 e BOCK
5 60 — void i
"'8 Guided evolutionary strategy model "5
5 50 ,,\ = True gradients E 75
2 2
3 870
O 0
O O
65
0 1 2 V 3 4 60
10 10 10 10 10 0 5000 10000 15000 20000
Number of function calls Number of function calls
Nonlinear Three Hump Neural network weights
problem’ 40d|m Opt|m|zat|on, 91 d|m

L-GSO is free from explicit variational distribution model

L-GSO outperforms all algorithms in a high-dimensional setting with lower dimension manifold.

1. Liu, Shuang, and Kamalika Chaudhuri. “The inductive bias of restricted f-gans.” arXiv preprint arXiv:1809.04542 (2018).

2. Uppal, Ananya, Shashank Singh, and Barnabas P6czos. "Nonparametric density estimation & convergence rates for gans under besov ipm losses." Advances in Neural Information Processing Systems. 2019.

18.11.2021

30



Closing the loop for material

Current paradigm

Material
concept

Molecular

L4

= synthesis
"

(&

ok

(&)

©

D .
" Device
L

L construction

Testing and
characterization

g Scaling and manufacturing

Organic redox flow batteries

C\\ 4 1 . 20
gesenlies
WO o
AN molecule
y,

g i;x
. #

Device
prototype

{r’%ﬁ‘

v

Stability,
solubility,

&

) voltammetry |

sclence

“Closing the loop”

Inverse design
Generative Simulation/

process i optimization
nel

Integrated pipeli

Al/ML
Software
Robotics

CY
azs

Sanchez-Lengeling and Aspuru-Guzik Science 2018, 361, 360.
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https://www.youtube.com/watch?v=4W{G7 4B7mM
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https://www.youtube.com/watch?v=4WfG7_4B7mM

Self-driving labs, Alan Aspuru-Guzik

'And accelerated discovery with generati:

works!

MIT Technology Review

10 Breakthrough Technologies 2020

Al-designed molecules

som
&
SN* - ——
7 .
o
rr\? 1 v
A8
v
P—
-
g 1ot <] v
P " > v
iy "
Rt S v
s J v
’

s ] s s Seei s e
5 Catemge et ey e e

Zhavoronkov et al, Nature Biotechnology 37, 1038-1040 (2019)

Fast model

Hardware experiment lab

Optimization / comparison

https://www.youtube.com/watch?v=4W{fG7 4B7mM

.." Generative models for crystals

Inverse Design of Solid-State Materials via a
Continuous Representation

“..IYIH\'
biotechnology

0 6 0
. 4 6 id
Deep learning ena o ‘ e
: central
potent DDR1 kinas| A e R A science
Yy

Alex Zhavoronkov®™, Yan A. lvanen! i v. J : Z

Anastasiya V. Aladinskaya', Victor A - 0K 00

Arip Asadulaey’, Yury Volkov', Artem| = e i B

Lidiya . Minaeva’, Bogdan A. Zagribe| . Yo T T Sungwon Kim," Juhwan Noh," Geun Ho Gu, Alan Aspuru-Guzik, and Yousung Jung*
Tao Guo Guzik™ = e . —_—

Generative Adversarial Networks for Crystal Structure Prediction
and Alan Aspuru-Guzik
V,0, (C2/m, 50.65 meV/at.) V,0, (C2/m, 66.90 meV/at )

Newly generated/sampled polymorphs
80 meV/atom above convex hull

J Noh, ..., J Aspuru-Guzik, Y Jung, Matter 1, 1370-1384 (2019) S. Kim, Aspuru-Guzik, Y Jung ACS Cent Sci 6, 1412 (2020)

v I v l v
- ™
P Ceven T MeN
sovcacn s Murveemst Mo Phamacskineses e L — ¢ | B.pro(ected

X1 7 500 00 haloboronic acid

—0——

Coupling
( MeN -
f!‘ 7_B(OH), I 1.4

1. 1 coupling - 16 reactions in parallel

2. Solid dispensing: starting materials, base,
and catalyst

3. Adding the solvent

4. Heating and vortex under reflux and inert gas
for 16 hours L X X 32
GDU - gravimetric dispensing unit


https://www.youtube.com/watch?v=4WfG7_4B7mM

Notable examples

> Robot Scientists,
https://owncloud.gwdqg.de/index.php/s/vZJiBu7PviP24i3

— Adam (2009)

— Eve

— Genesis
> Kebotix, https.//www.kebotix.com/

> Ada, https://www.science.org/doi/10.1126/sciadv.aaz8867

> KIWI, https://kiwi-biolab.de/
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[ J
W h y A I + P h yS I C S ? https://www.youtube.com/watch?v=0dskCpuxqatl

Challenges for describing complex systems

>

>

Dark matter search
Quantum vs classical gravity

Self-driving research

WHATWENTWRONGWITH.COM

- £ e
=

atwentwrongwith.com/2020/07/23/what-went-wrong-with-inception-2010/

- —
_— — —

https://www.artstation.com/artwork/AgawDV
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Open questions

>  Which known scientific paradigms/frameworks can be helpful for
building interpretable forward models?

— Construction theory, Gauge theory, Renormalization theory, Quantum field theory?

> Can we leverage different computation model to speed-up inverse
model design?

— Quantum computing
> Can inverse models be developed on top of trained forward models?

> To what extend a system semantic description can be helpful?

— How to merge semantic descriptions with differentiable optimization routines?

> How useful can multi-scale hybrid simulation be?
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Towards Physics-enabled Al

Governing frameworks
»  Scale-invariance via emergent properties identification, Barnett L, Seth A https://arxiv.org/abs/2106.06511

»  Constructor theory (Deutsch, David. “Constructor theory.” Synthese 190 (2013): 4331-4359, Chiara Marleto,
https://arxiv.org/pdf/1608.02625.pdf)

Building blocks

»  Hypothesis generative model
» Inductive Bias Library for representation and forward model
»  Dynamic Representation Learning
— Emergent properties detection / analysis
»  Simulation-Exploration cycle / active learning
- Model ensembling
»  Inverse model construction / interpretation

»  Hypothesis testing / verification

18.11.2021
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Conclusion

» New technologies demand new research approaches that can be dramatically
improved with data-driven methods (machine learning)

» Interpretability is a tricky matter
— Decision trees, Robustness tests, Generalization, Symbolic regression

» Physical principles aid towards complex system analysis
— Emergent properties

— Invariant search

— Forward / inverse model construction / calibration

» Ultimate goal: self-driving research

— Some progress is already made, but still a long road to go

> Open for collaboration / internship Yy e anaderiRu
©) hse lambda
https://indico.cern.ch/event/1082512/ 18112001 austyuzhanin@hse.r%
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Towards a Theory of Evolution as Multilevel Learning,

»  P1.Loss function. In any evolving system, there exists a loss function of time-dependent variables that is minimized
during evolution.

»  P2Hierarchy of scales. Evolving systems encompass multiple dynamical variables that change on different
temporal scales (with different characteristic frequencies).

»  P3.Frequency gaps. Dynamical variables are split among distinct levels of organization separated by sufficiently
wide frequency gaps.

»  P4. Renormalizability. Across the entire range of organization of evolving systems ,a statistical description of faster-
changing (higher frequency) variables is feasible through the slower-changing (lower frequency) variables.

»  P5.Extension.Evolving systems have the capacity to recruit additional variables that can be utilized to sustain the
system and the ability to exclude variables that could destabilize the system.

»  P6.Replication. In evolving systems, replication and elimination of the corresponding information processing units
can take place on every level of organization.

»  P7.Information flow. In evolving systems, slower-changing levels absorb information from faster-changing levels
during learning and pass information down to the faster levels for prediction of the state of the environment and
the system itself.

Vanchurin V, et al https://arxiv.orqg/abs/2110.14602
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Symbolic regression problem statement

1. Given a dataset D = (X4, Yy), Xg CR™Y; CR

Find a mathematical formula y = f(x) approximating D :

V(xs, %) €Dy = f(s)

2. Given a dataset D = (Xy,Yy), Xy CX CR™,Y; CYCR

Choose a point z € X to add to the dataset with corresponding y

18.11.2021
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Design optimisation in 42 dimensional space of physics simulator

U C .
.8 100 w 400 Frame: 0
SR ]
D€ 50
52 200
—— Width at the beginning - ‘
100 — width at the end v 0 _ "é_'——__,“
—— Height at the beginning > —
80 —— Height at the end —-200
’é —— Gap at the beginning
L 60 —— Gapattheend —-400
(0]
B 40 I ——————n 0 500 1000 1500 2000 2500 3000
Z,cm
0
0 20 40 60 80 100 120
Number of calls
|
. . I
L-GSO improves previous results
obtained with BO with the same
computational budget.
p g 0 500 1000 1500 2000 2500 3000

Z,cm
I New design is 25% more efficient.

Shirobokov S., Belavin V,, Kagan M, AU, Baydin A., NeurlPS'20 paper
https://arxiv.org/abs/2002.04632
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f(x)
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Active Learning: Next Points
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