

Титул

В.В.Варламов

Центр данных фотоядерных экспериментов НИИЯФ МГУ: возможности и исследования.

2/17/2021

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Центр данных фотоядерных исследований НИИЯФ МГУ: возможности и исследования

МИНИСТЕРСТВО ВЫСШЕРО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ СССР МОСКОВСКИЙ орлена ЛЕНИНА и ордена ТРУДОВОГО КРАСНОГО ЗИАМЕНИ Государственный ушворситет имени М.В.Ломонсосова НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ МГУ

. 2. на.е. Ти 10²⁹г. г. Москва.

В целях повышения эффективности работь Группы 29:138:300 ядерных дан ных, полученных в экспериментах с У-квантами, в направлении сбора, систематизации и распространения данных о фотоядерных реакциях и , упорядочения контактов ее сотрудников с организациями и лицеми в СССР и за рубежом, ПРИКАЗЫВАЮ:

Переименовать Группу анализа ядерных данных, полученных в экспериментах с У-квантами в ЦЕНТР ДАННЫХ ФОТОЯДЕРНЫХ ЭКСПЕРИМЕНТОВ (ПЛЕФ).

§ 2 Назначить начальником ЦДФЭ НИМЯФ МТУ с правом подписи соответстпулицих документов начальника ЛЭШВАЯ НИМЯФ МТУ профессора Б.С.Ишханова. § 3

Назначить заместителями начальника ЦДФЭ НИИЛФ МГУ с правом подписи соответствующих документов к.ф.м.н.И.М.Капитонова и к.ф.м.н. В.В.Варламова.

Заместителю НИИИФ МГУ по административно-хозяйственной реботе совместно с начальником ЦДФЭ профессором Б.С.Ишхановым подготовить вопрос о создании на основе официального бланка НИИНФ МГУ официального бланка ЦДФЭ НИИНФ МГУ. § 5

\$ 4

Ученому секретары НИИЯФ МГУ Е.А.Романовскому совместно с начальником ЦДСЭ профессором Б.С.Ишхановым подготовить вопрос о порядке зарубежных контактов ЦДСЭ.

2 ноября 1979 г.

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

ЭВМ ЕС-1022

Центр данных фотоядерных экспериментов (ЦДФЭ – CDFE) НИИЯФ МГУ

ЦДФЭ (CDFE)

Основные задачи Центра:

• участие в создании и поддержании международной базы данных (БД) по ядерным реакциям под эгидой МАГАТЭ:

- поиск и компиляция фотоядерных данных, публикуемых в разных странах;

- форматирование данных в согласованных форматах, регулярное пополнение и обновление разделов БД;

• обеспечение доступа сотрудников МГУ и других российских учебно-научных организаций к современной международной ядерно-физической информации:

- адаптация основных массивов числовых ядерно-физических данных;
- создание соответствующих информационно-поисковых систем (электронные банки, базы, карты данных, информационно-поисковые системы, Интернет-интерфейсы);

- подготовка и распространение информационных указателей, атласов, обзоров;

• экспертиза точности, надежности и достоверности данных, анализ и оценка данных, согласование результатов разных экспериментов.

Информационно-поисковые системы

Система коллективного пользования ЭВМ МГУ

Запросы сотрудников МГУ и других организаций

Гранты РФФИ

Исследовательские контракты МАГАТЭ

Web-сайт ЦДФЭ

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Сеть МАГАТЭ Центров данных по ядерным реакциям (Nuclear Reaction Data Centers (NRDC) Network): 14 организаций из Австрии, Венгрии, Индии, Китая, Кореи, России (ЦДФЭ НИИЯФ МГУ (Москва), ЦЯД (РФЯЦ ВНИИЭФ (Саров), ЦЯД ФЭИ (Обнинск)), США, Украины, Франции, Японии

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

2/17/2021

НИИЯФ-75, 2021

NDS - NNDC

«Фотоядерных» в названии ЦДФЭ – дань истории, ЦДФЭ давно – Центр ядерных данных

Электронные базы данных по ядерным реакциям и спектроскопии атомных ядер, электронные карты по размерам ядер, ядерным деформациям, интерактивный калькулятор характеристик ядер, ядерных реакций и радиоактивных распадов

> Ссылки на Интернет-ресурсы партнеров по сотрудничеству МАГАТЭ

Информационная поддержка научных исследований и учебного процесса

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Web-сайт ЦДФЭ

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

2/17/2021

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Выпуски

Карта ядер

Примеры выдачи данных о реакциях и распадах.

Энергии связи и удельные энергии связи различных ядер

«ЦДФЭ НИИЯФ МГУ»

НИИЯФ-75, 2021

11

Энергии β-распада

примеры

Энергии α-распада

Базы - банки

Базы и банки данных – инструменты новых информационных технологий:

практически все опубликованные данные в цифровом виде и мощное гибкое программное обеспечение для поиска данных по большому количеству признаков открывают новые возможности для проведения новых исследований, прежде всего по анализу данных и установлению неизвестных ранее закономерностей, получению новых данных.

> Могут быть заданы вопросы, которые раньше «не приходили в голову»,

> > ответы на которые –

новые данные, новые сведения, новое знание.

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Классические магические ядра: 2, 8, 20, 28, 50, 82, 126

Некоторые характерные признаки магических ядер (по сравнению с соседними):

• у них энергия первого $J^{\pi} = 2^+$ уровня $E(2_1^+)$ заметно больше;

• они имеют более сферическую форму (менее деформированы) - заметно меньший параметр квадрупольной деформации β₂;

• у них отношение энергий первых $J^{\pi} = 4^+$ и $J^{\pi} = 2^+ E(4_1^+)/E(2_1^+)$ заметно меньше;

• для них имеются заметные особенности в энергиях отделения нуклонов, например, в зависимостях B(n), B(2n) от N, Z и/или A;

• и некоторые др. (различия энергетических щелей и т.д.)

Energy value for 2+ level

НИИЯФ-75, 2021

Ядро	Z	N	Прот. пара	"j = j" связь	Нейтр. пара	Коммент.
$^{14}\mathrm{C}$	6	8		$\pi 1 p_{3/2}$ - $\nu 1 p_{3/2}$	v1p _{1/2}	
¹⁴ O	8	6	$\pi 1 p_{1/2}$	$\pi 1 p_{3/2}$ - $\nu 1 p_{3/2}$		
¹⁶ O	8	8		$\pi 1 p_{1/2}$ - $\nu 1 p_{1/2}$		дважды класс.
²⁴ O	8	16		$\pi 1 p_{1/2}$ - $\nu 2 s_{1/2}$		
²⁸ O	8	20	$\pi 1 p_{1/2}$	$\pi 1 p_{3/2}$ - $\nu 1 d_{3/2}$		дважды класс.
⁴⁰ O	8	32	$\pi 1 p_{1/2}$	$\pi 1p_{3/2}$ - $\nu 2p_{3/2}$		теор. связ.
⁴⁸ O	8	40		$\pi 1 p_{1/2}$ - $\nu 2 p_{1/2}$		нет данн.
³⁰ Si	14	16		$\pi 1d_{5/2}$ - $\nu 1d_{5/2}$	$v2s_{1/2}$	
³⁰ S	16	14	$\pi 2s_{1/2}$	$\pi 1d_{5/2}$ - $\nu 1d_{5/2}$		нет данн.
⁵⁴ Ca	20	34	$\pi 2 p_{1/2}$	$\pi 2p_{3/2}$ - $\nu 1d_{3/2}$		
⁹⁶ Sr	38	58		$\pi 1 f_{5/2}$ - $\nu 2 d_{5/2}$	v2p _{1/2}	
⁹⁶ Zr	40	56	$\pi 2 p_{1/2}$	$\pi 1 f_{5/2}$ - $\nu 2 d_{5/2}$		

Установлено, что ядро ⁹⁶Zr имеет характерную структуру верхних подоболочек заполненные протонная и нейтронная подоболочки с одинаковым j.

Установлено, что такую же структуру имеют некоторые другие «новые (неклассические)» магические ядра - имеющие признаки классических магических ядер, но не предусмотренных традиционной оболочечной моделью.

Предложен механизм парного взаимодействия протонов и нейтронов с одинаковым полным моментом ј с учетом эффектов протоннейтронного спаривания.

Исследования в области «Магические числа и эволюция оболочечной структуры атомных ядер».

2/17/2021

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Магические ядра

Центр данных фотоядерных исследований НИИЯФ МГУ: возможности и исследования

Международная электронная база данных по ядерным реакциям под действием фотонов, нейтронов, заряженных частиц и тяжелых ионов системы EXFOR.

Фотоядерные данные: числовые данные из многих (несколько тысяч) публикаций.

EXFOR

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Огромное количество данных международной электронной БД системы EXFOR

(выходы и сечения реакций, спектры, угловые, зарядовые, массовые распределения продуктов, поляризации, анализирующие способности, ...) о ядерных реакциях под действием:

электронов	[(e, e'), (e, 1n), (e, 2n), (e, 3n),, (e, 1p),, (e, f),];
фотонов	[(γ, γ'), (γ, 1n), (γ, 1n1p), (γ, 2n), (γ, 3n),, (γ, 1p), (γ, 1p1n)
(несколько тысяч статей)	\dots (γ , 2npd α), \dots (γ , f), \dots];
нейтронов	[(n, n'), (n, γ), (n, p), (n, d), (n, t), (n, α),];
заряженных частиц	[(p, p'), (p, n), (p, d), (p, t), (p, α),
	, (d, d'), (d, n), (d, p), (d, t), (d, α),
	, (t, t') , (t, n) , (t, p) , (t, d) , (t, α) ,, $(\alpha, 117n80p)$,];
тяжелых ионов	[(⁶ Li, n), (¹⁰ B, p),(¹⁴ N, ¹¹ C),, (⁴⁰ Ar, 5np α),]

EXFOR

Центр данных фотоядерных исследований НИИЯФ МГУ: возможности и исследования

Пример: поиск данных по сечению реакции ²⁶Mg(γ,xn).

«ЦДФЭ НИИЯФ МГУ»

НИИЯФ-75, 2021

EXFOR - поиск

линии в спектре фотонов.

35

30

25

20

15

Cross section, mb

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Разрешение1

Разность двух выходов есть не сечение, а вновь выход реакции: $\int W_1 \sigma dE - \int W_2 \sigma dE \neq \sigma$

Простая разностная процедура определения сечения реакции позволяет убрать «хвост» тормозного излучения позитронов, но не позволяет повысить энергетическое разрешение!

Разностная процедура – вычитание из результата с плохим разрешением результата с очень плохим разрешением! Получение хорошего разрешения – «вечный двигатель»!

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Разрешение2

Большинство данных о сечениях парциальных фотонейтронных реакций получено в 1962 – 1986 годах в Ливерморе (США) и Сакле (Франция) на пучках квазимоноэнергетических аннигиляционных фотонов с помощью метода разделения нейтронов по множественности и опубликовано в полном атласе –

S.S.Dietrich, B.L.Berman. Atomic Data and Nuclear Data Tables, 38 (1988) 199

Имеется также некоторое количество данных, полученных на пучках тормозного излучения.

Главная проблема: для 19 ядер, исследованных в обеих лабораториях: сечения реакций (γ, 1n) имеют большие величины в Сакле, (γ, 2n) – в Ливерморе.

НИИЯФ-75, 2021

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

2/17/2021

Новый экспериментально-теоретический подход к оценке сечений парциальных фотонейтронных реакций:

> $\sigma^{\text{oueh}}(\gamma, 1n) = F_1^{\text{teop}} \bullet \sigma^{\text{skcn}}(\gamma, xn),$ $\sigma^{\text{oueh}}(\gamma, 2n) = F_2^{\text{teop}} \bullet \sigma^{\text{skcn}}(\gamma, xn),$ $\sigma^{\text{oueh}}(\gamma, 3n) = F_3^{\text{teop}} \bullet \sigma^{\text{skcn}}(\gamma, xn),....$

• только экспериментальное сечение реакции полного выхода нейтронов σ^{эксп}(γ, xn), априори свободное от ограничений методов разделения нейтронов по множественности, используется как исходное;

• для определения вкладов в сечение полной реакции $\sigma^{3\kappa cn}(\gamma, xn)$ сечений парциальных реакций $\sigma^{ouen}(\gamma, 2n)$ и $\sigma^{ouen}(\gamma, 2n)$ - описания конкуренции каналов распада ГДР – используются переходные функции множественности - отношения $F_{1,2,3}$, ..., рассчитанные в рамках комбинированной модели фотонуклонных реакций.

Экспериментально-теоретический подход к оценке сечений парциальных реакций означает, что соотношение между ними соответствует представлениям модели, а соответствующая сумма сечений парциальных реакций $\sigma^{ouen}(\gamma, xn)$ равна сечению выхода нейтронов $\sigma^{
m эксп}(\gamma, xn)$, не зависящему от разделения нейтронов по множественности.

Основной причиной расхождений является недостоверная (ошибочная) сортировка нейтронов по множественности, основанная на измерении их энергии, поскольку спектры нейтронов из реакций (γ, 1n) и (γ, 2n) оказываются близкими.

Для многих ядер (⁵¹V, ^{63,65}Cu, ⁷⁵As, ^{76,78,80,82}Se, ⁸⁹Y, ^{90,91,92,94}Zr, ¹⁰³Rh, ^{116,117,118,119,120,124}Sn, ¹¹⁵In, ¹²⁷I, ¹²⁹Xe, ¹³³Cs, ¹³⁸Ba, ¹³⁹La, ^{140,142}Ce, ¹⁴¹Pr, ^{145,148}Nd, ¹⁵³Eu, ¹⁵⁹Tb, ¹⁶⁰Gd, ¹⁶⁵Ho, ¹⁸¹Ta, ¹⁸⁶W, ^{186,188,189,190,192}Os, ¹⁹⁷Au, ²⁰⁸Pb, ²⁰⁹Bi, и некоторые другие) оцененные и экспериментальные данные существенно различаются вследствие присутствия в сечениях реакций существенных систематических погрешностей, обусловленных недостоверной (ошибочной) сортировки нейтронов по множественности, основанной на измерении их энергии.

Для четырех ядер (⁷⁵As, ¹²⁷I, ¹⁸¹Ta и ²⁰⁸Pb) обнаружено присутствие в сечениях реакций систематических погрешностей иного рода, вызванных потерей части нейтронов из реакции (γ, 1n), обусловленной техническими причинами.

> «ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Центр данных фотоядерных исследований НИИЯФ МГУ:

Центр данных фотоядерных исследований НИИЯФ МГУ: возможности и исследования

A A		C	^{линт} цен/о ^{ин}	П	25	Чем больше вклад сечения σ(γ, 1n) простой реакции в сечение более сложной реакции, т					
N XXX	Ядро реакция	127 I	¹⁸¹ Ta	²⁰⁸ Pb		больше степень недостоверного (ошибочного) занижения экспериментального сечения по сравнению с оцененным:					
AXA	(γ , xn)	1.21	1.24	1.28	33	(ү, xn) = (ү, 1n) + [2(ү, 2n) + 3(ү, 3n) +] некоторый вклад реакции (ү, 1n);					
X	(γ , sn)	1.25	1.30	1.37	35	$(\gamma, sn) = (\gamma, 1n) + [(\gamma, 2n) + (\gamma, 3n) +]$ больший вклад реакции (γ , 1n);					
X	(y, 1n)	1.33	1.46	1.42		(ү, 1n) = (ү, 1n) + [0] максимальный 100%-вклад реакции (ү, 1n);					
X	(y, 2n)	0.98	1.05	0.83	25	(ү, 2n) [0] минимальный (0-й) вклад реакции (ү, 1n) .					

Установленные соотношения означают, что именно очень большие (33, 46 и 42%) занижения сечения реакции (γ, 1n) обуславливают значительные (20, 24 и 28%) занижения сечений реакции (γ, xn).

Это означает, что в экспериментах Ливермора для исследуемых ядер большое количество нейтронов из реакции (γ, 1n) было потеряно (вследствие каких-то технических проблем). Расхождения не могут быть убраны простой перенормировкой.

> «ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

S.,

2

7

3

2

Возможности ЦДФЭ:

доступ к разнообразной современной международной информации об атомных ядрах, ядерных реакциях и радиоактивных распадах, подготовленной партнерами по сотрудничеству МАГАТЭ; электронные базы и карты разнообразных ядерных, в том числе фотоядерных данных; гибкие возможности поисковых систем баз данных как инструментов научных исследований.

Исследования ЦДФЭ:

установление новых систематических закономерностей структуры атомных ядер, в том числе в области новых неклассических магических ядер;

установление причин расхождений результатов разных фотоядерных экспериментов по форме как следствия различий в параметрах достигаемого эффективного энергетического разрешения;

установление причин расхождений результатов фотоядерных экспериментов по абсолютной величине как следствия проявления систематических погрешностей, обусловленных несоответствием объективным физическим критерием достоверности данных;

получение (оценка) в рамках Исследовательского контракта «НИИЯФ – МАГАТЭ» новых данных по сечениям реакций для ~ 50 ядер (⁵¹V, ^{63,65}Cu, ⁷⁵As, ^{76,78,80,82}Se, ⁸⁹Y, ^{90,91,92,94}Zr, ¹⁰³Rh, ^{116,117,118,119,120,124}Sn, ¹¹⁵In, ¹²⁷I, ¹²⁹Xe, ¹³³Cs, ¹³⁸Ba, ¹³⁹La, ^{140,142}Ce, ¹⁴¹Pr, ^{145,148}Nd, ¹⁵³Eu, ¹⁵⁹Tb, ¹⁶⁰Gd, ¹⁶⁵Ho, ¹⁸¹Ta, ¹⁸⁶W, ^{186,188,189,190,192}Os, ¹⁹⁷Au, ²⁰⁸Pb, ²⁰⁹Bi, и некоторые другие);

обновление и пополнение электронной библиотеки МАГАТЭ оцененных фотоядерных данных.

Центр данных фотоядерных исследований НИИЯФ МГУ: возможности и исследования

Спасибо за внимание!

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Спасибо

			🕘 CDFE search eng	ine Microso	oft Internet Exp	lorer						_ 0
🦉 CD	FE => Online Services => R	elational ENSDF - Microsoft	<u>Ф</u> айл <u>П</u> равка <u>В</u> ид	ц <u>И</u> збранное	С <u>е</u> рвис <u>С</u> пра	вка						
<u>Ф</u> айл	<u>П</u> равка <u>В</u> ид <u>И</u> збранное	Сервис <u>С</u> правка	🗢 Назад 🔻 🔿 👻 🙆) 🗟 🐴 🛛 🖓	Адрес <u>:</u> 🕘 http:/	/cdfe.sinp.msu.	ru/cgi-bin/nes:	sy/v.9/nes	sy.cgi		•	∂⊓epe>
<> Ha:	зад ▼ → ▼ 🙆 🖄 🕍 М	дрес <u>:</u> 🕘 http://cdfe.sinp.msi										
	Level (E, JPI, '11/2, etc.)	Query parameters:										
	Energy (keV)	Energy (keV) 4000-6000		Nucleus Level energy Spin-parity Half-life Isospin Photon energy S					Spin-parity (fin.)	in-parity (fin.) Half-life (fin.)		
11	Spin and parity	3/2-,5/2	51.78	25-MN-51	5129	1/2-,3/2-	, 	3/2 2145		5/2+	`	
	Half-life	☐ Stable	<u>51.78</u>	25-MIN-51	5129	1/2-,3/2-		3/2	2819	5/2(-)	0.9 PS (6)
	Anugular momentum transfer		<u>51.78</u>	25-MN-51	5129	1/2-,3/2-		3/2	2873	(5/2-)	79 FS (+33	3-26)
	Q Moment Additional remark Gamma transition (Gamma ray Gamma ray (E. Int, Mult, M Energy of the γ-ray (keV) Relative photon intensity Relative total transition inte Multipolarity of transition Mixing ratio	Insity	олнен ряд овней, зна арактер	д иссл ачени истик	1едова ій их э с сооте	ний о нерги зетств	тноси ій и с вующ	ител пин их ү	њно не ов-чет -перех	которы ностей, одов.	X	
	Total conversion coefficier	ut	<u>59.70</u>	29-CU-59	5522.3 (4)	5/2		3/2	2805	7/2(-)		
	Additional remark	any	<u>59.70</u>	29-CU-59	5550.0 (6)	5/2		3/2	2116	5/2		
	Final level (E, JPI, T1/2, etc	<u>2.)</u>	<u>59.70</u>	29-CU-59	5550.0 (6)	5/2		3/2	2435	5/2-	14 FS (8)
•			<u>59.70</u>	29-CU-59	5550.0 (6)	5/2		3/2	2622	5/2(-)		
			<u>59.70</u>	29-CU-59	5645.0 (8)	(3/2)-		3/2	2649	(7/2-)		
							Get all da	ta				

Уникальный запрос:

«Найти ядра с уровнями с $J^{\pi} = 3/2^{-}$ или 5/2 и изоспином T = 3/2, возбуждаемые в диапазоне энергий E = 4 - 6 МэВ, распадающиеся с испусканием γ -квантов с энергиями $E_{\gamma} = 2000 - 3000$ кэВ на уровни конечных ядер с $J^{\pi} = 5/2$ или 7/2 (должна быть выдана также информация об энергиях, значениях J^{π} и временах жизни конечных состояний)»: 51 Mn, 55 Со и 59 Си.

2/17/2021

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

Некоторые аномалии – свидетельства существования новых нетрадиционных (не описываемых классической оболочечной моделью) свойств ядер.

🥙 CI)FE =	> Onli	ne Se	rvices	=> C	hart c	of Nuc	lear Q	uadru	ipole I	Defori	natio	ns - M	icroso	ft Int	er [_ 🗆	×
] <u>Φ</u> аί	Файл Правка Вид Избранное Сервис <u>С</u> правка 🔢																	
] ⇔⊦	(+ Назад ▼ → ▼ 🙆 🖄 🕺 ОдПоиск 📾 Избранное இМедиа 🎯 🛛 👋 😨 ▼																	
Адрес: 🕘 http://cdfe.sinp.msu.ru/cgi-bin/muh/chartnucl.cgi?zmin=14&zmax=24&zch=0&fz=2&tx 🔽 🔗 Переход													рд					
<u> </u>																		
$Z=24 42_{\rm Cr} 43_{\rm Cr} 44_{\rm Cr} 45_{\rm Cr} 46_{\rm Cr} 47_{\rm Cr} 48_{\rm Cr} 49_{\rm Cr} 50_{\rm Cr} 51_{\rm Cr} 52_{\rm Cr} 53_{\rm Cr} 54_{\rm Cr}$												ļ						
			Z=23	40V	41 _V	42V	43 _V	44V	45 _V	46 _V	47V	$48_{\rm V}$	49 _V	$50_{ m V}$	$51_{\rm V}$	52V	53V	ļ
		Z=22	38 _{Ti}	³⁹ Ti	40Ti	41 Ti	42Ti	⁴³ Ti	44Ti	45Ti	⁴⁶ Ti	47 Ti	⁴⁸ Ti	⁴⁹ Ti	⁵⁰ Ti	51 Ti	52 _{Ti}	ļ
	Z=21	36 _{Sc}	37Sc	38 _{Sc}	39 _{Sc}	40Sc	41 _{Sc}	42 _{Sc}	43Sc	44Sc	45Sc	46 _{Sc}	47Sc	48Sc	49Sc	50 _{Sc}	51 _{Sc}	Ļ
Z=20	³⁴ Ca	35 _{Ca}	36 _{Ca}	37 _{Ca}	³⁸ Ca	³⁹ Ca	40 _{Ca}	⁴¹ Ca	42Ca	43 _{Ca}	⁴⁴ Ca	⁴⁵ Ca	46 _{Ca}	47 /a	48 _{Ca}	49 _{Ca}	50 _{Ca}	Ļ
^{32}K	33 _K	^{34}K	³⁵ K	$36_{\rm K}$	$^{37}\mathrm{K}$	38 _K	³⁹ K	40 _K	⁴¹ K	⁴² K	43 _K	44K	45 _K	46 _K	$47_{\rm K}$	48 _K	49 _K	Ļ
³¹ Ar	32 _{Ar}	³³ Ar	³⁴ Ar	³⁵ Ar	36 _{Ar}	³⁷ Ar	³⁸ Ar	³⁹ Ar	40 _{Ar}	⁴¹ Ar	42 _{Ar}	43 _{Ar}	44Ar	⁴⁵ Ar	46 _{Ar}	47 _{Ar}	⁴⁸ Ar	ļ
30 _{Cl}	³¹ Cl	³² Cl	³³ Cl	³⁴ Cl	35 _{Cl}	36 _{Cl}	$^{37}\mathrm{Cl}$	38 _{Cl}	³⁹ Cl	40 _{Cl}	41Cl	42Cl	43C1	44C1	45 _{Cl}	46 _{Cl}	47Cl	ļ
29 _S	30 _S	31 _S	32S	33S	34S	35S	36S	37S	38 _S	39S	40 _S	41S	42S	43S	44S	45S	46S	ļ
28p	29p	30p	31p	32p	33p	34p	35p	36p	37p	38p	39p	40p	41p	42p	43p	44p	45p	l
27 Si	28 _{Si}	29 _{Si}	³⁰ Si	31 Si	32Si	33Si	³⁴ Si	35 _{Si}	36 _{Si}	³⁷ Si	³⁸ Si	³⁹ Si	40Si	⁴¹ Si	42 _{Si}	43Si	⁴⁴ Si	
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
	y 🐨 y		· 🕶 🛛	y -y	~~~~	9 - 9 1	• •	· 🕶 🗸	y -y	~~~		•••	~ ~	y 🕎	~ ~		• •	
III I	· ·				· ·		• •			· ·	Ť	· ·	· · ·		· ·	· ·	•	ř
<u></u>												🥏 Ин	терне	т				
X	1	X	81	(7	XI	0	X	15	X	1	(7)	XI	C	X	1 (X	1	0

Карта деформаций.

Легко наблюдать аномалии, например:

добавление двух нейтронов (26 ⇒ 28) в ядре ⁴⁸Ti (Z = 22) меняет форму ядра с вытянутой на сплюснутую,

а в ядре ²⁸Si (14 ⇒ 16) напротив со сплюснутой на вытянутую.

«ЦДФЭ НИИЯФ МГУ» НИИЯФ-75, 2021

2/17/2021