


LO\
100 101 102 1028 |7\
100 mechary/s condensed matter physics
10°
at. ph/s. mol. phys., chemistry
108
/
1013 nug(. phys.
part.
yS.
1017 N — number of elements,
R — size of a system, ----
border of  precisely
1028 solvable problems
1/R

(cm?) 7



PROBLEM OF STRUCTURING

How to state the problem of substructures (clusters) in two-
(or few-) cluster system taking into account indistingvishibility
of identical fermions and the strong nuclear interaction?
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HISTORY OF CLUSTERING RESEARCHES

Beginning:
Resonating Group Model, RGM (Wheeler, 1937).

A unified theory of the nucleus (Wildermuth and Tang, 1977).

Clustering in the shell model and its adoption to the decay
and reaction theory. Spectroscopic factors. (Mang,1957 —
alpha-decay; Balashov, Neudatchin, Smirnov, Yudin, 1959 —
transfer and knock-out reactions).

Multiple contributions:

Smirnov et al — shell-model algebra.

Neudatchin et al — cluster-cluster potential with forbidden
states.

Kukulin et al — multicluster dynamical model.

Zelenskaya et al — cluster transfer reactions.



COMPOSITE PARTICLE INTERACTION IN THE
RGM. ONE-CHANNEL PROBLEM

The wave function (WF) of the resonating group
model (Wheeler 1937) is chosen in the form:

Yain, = A{\PA1 A(P(P)}

A:(AAJM (1+%(—1)p F3)

The A-fermion Schrodinger equation
HY pia, =E¥ A, H=T+V,

where

A+ 6 ,\ A+A,
oD IS SR

=1 i<j=1



results in two-body equation of another type:

(T, +V, —E'N )e(p) =0,

1 Aq 1 A,
E'=E-E -E,, pP=42%F —
: : A_‘L =1 AZ I= AL+1
where: <N|g’2(p(5)\ Ng’ch(p)> =1 8(E-E"), 5(k —k"), etc
N, N(p',p) N(p',p")
T, [oo)=]| T("p) (e dp’ T(0'p") |=
V V(p',p) V(p',p")




Introducing a new WF:
$(P) = N;"*o(p)

one can obtain the Schrodinger-like equation with
Hermitian Hamiltonian.

(N —1/2-|- N ~1/2 4 N —1/2V —1/2 )(I)(p) 0.

where the habituated orthonormalization conditions
take place:

((I)(())M)(ﬁ)) =1 - for states of discrete spectra,

(0e (P)| 0 (P)) =8(E—E"), etc. - for continuum states.



CLUSTERING IN BOUND STATES

A basic concept of the approach is the definition of
measures of clustering in arbitrary A-nucleon model

(cluster characteristics). Traditional definition were the
following:

a) the spectroscopic amplitude —

Cooe =<Wy | ¥ o4, (P) ¥ 3>

b) the projection of the nuclear WF onto the cluster

channel — the cluster form factor (CFF) and its norm —
spectroscopic factor (SF) —

®,(p) =<F,, | AP, %5(/) W (R, )

2
Sypc = ICD(,O) |2 Pzdp = Zn:(CIC/IIDC ) :



A great formalism was developed for calculations of the
cluster characteristics :

Neudatchin VG, Smirnov YF, Nucleon Clusters in Light
Nuclei. M: Nauka Moscov, 1969.

Smirnov YF, Tchuvil'sky YM, Phys. Rev. C, 15 84
(1977).

Nemets OF, Neudachin VG, Rudchik AT, Smirnov YF,
Tchuvil'sky YM, Nucleon Clusters in Atomic Nuclel and
Multinucleon Transfer Reactions,

Naukova Dumka, Kiev, 1988.

Tchuvil'sky YM, Kurowsky WW, Sakharuk AA,
Neudachin VG, Phys. Rev. C, 51 784 (1995).



REDEFINITION OF THE CLUSTERING MEASURES.
“NEW” CLUSTER CHARACTERISTICS.

In the paper [T. Fliessbach and H.J. Mang, Nucl. Phys. A
263, 75 (1976)] the habituated view on the clustering
measures was thrown doubt. The matter is that a more
accurate matching procedure (point or integral) Is
required to deduce the amplitude and the width of a
cluster channel.

~ / M!
D, (p) =<y | MY,Y,,(Q)F }>= DICI <Wy [¥pYin (¥ >

(Dl\fci!j_ < ALY LY QW H ALY LY, Q)W ) >=1



So the cluster form factors and the spectroscopic factors
should be defined as:

F(r)= <‘I’base N2ALY, %5 (o=pP Wi (Qp-)‘PAz}>-

where the norm (overlap) kernel takes the form:
C oy [ A 1 y ; 1 .
N(o', p") = <A{‘PA1 ?5 (0= P" Wi (@)Y, H ALY, ?5 (0= P Win(Q,)Y }>-

It is this function should be matched with an asymptotic WF
In the area where the form of “new” CFF reproduces its

or F(0) > 6 ()
whie @, <> NY24(p).

S'voc =] N;UZ(D(P) * pdp.
In the case that p —> oo; N —1.
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Lovas RG, Liotta RJ, Insolia A, Varga K, Delion DS,
Microscopic Theory of Cluster Radioactivity. Phys.
Rep., 294, 265 (1998).

A term "amount of clustering” was introduced fo the
Fliessbasch’s (“new”) SF.

Cluster States in Atomic Nucleli and Cluster Decay
Processes. Kadmenskii SG, Kurgalin SD, Tchuvil'sky
YM, Phys. Part. Nucl., 38, 699 (2007).



CFF, SF, ASYMPTOTIC CHARACTERISTICS OF
NUCLEAR STATES AND CROSS SECTIONS OF
NUCLEAR REACTIONS

Calculation of CFF and SF

The cluster-channel terms of basis are built in the

form: 1 - ~
Y, =V—VA{\PA1‘~PA2(DN (p)}JMJ’

They are not orthogonal one to another and to the
shell-model components.

The basis of cluster-channel terms incorporating all
channels of a certain fragmentation Al + A2 (a
complete set of internal states of each cluster) s
complete. Moreover this basis is overload and
even linear dependent.

The basis may be exploited itself or being added to
a certain number of shell-model WF (polarization
terms). In the latter case a hybrid basis appears.



The next step in shaping of a basis of general type is to
build orthonormalized WFs including the cluster terms of
several channels and the polarization terms. The WFs
are obtained by diagonalization of the matrix

1 (AT 00 R >
AlT®on L w R)Y ><H®NLM [To8 . R)Y >

i=1,2 i=1,2 i=1,2

(1)

AZ

(¥ia

In which the terms of the products are expressed in the
form of superpositions of Slater determinants (SD).

Eigenvectors of the matrix normalized by its eigenvalues
shape the desirable basis taking the form of SD linear
combinations. This basis may be employed in computing
of spectra of halo, clustered, resonance states and other
observables. 14



Norm (overlap) kernel and its computation

(' p") = <A{‘PA1 0ol Y, éa(p—p')v.m(ﬂpm}>.

By representing of the delta function as 2|4 (0))(¢. ()]

Its eigenvalues are calculated using the formalism of so-
called the cluster coefficients and take the form:

g =< ¥, i (B) P HII A¥p F ()Pl

and eigenfunctions (the result of diagonalization (1))
turn out to be expressed through the oscillator WFs

£ (p) = X By bt (0).
The final forms of CFF and SF are the following:

F(p)== %SEUZ%C&IDC flk (p);
n

2 2 - | 1 pk gk
SAAA (1) =[R(P)I" pdp :%gkl%'CRAlAZCRAiAZ Bni By



CONFIGURATION MIXING SHELL MODEL. RESULTS
AND DISCUSSION

Volya A, Tchuvil’'sky YM, Phys. Rev. C 91, 044319 (2015).

O-clustering in the ground states of (s-d)-shell

nuclel

SEEIPJ Saex]:-] 5691]:-] Sac-ld] SI:LI-:-l-:]] .-'_':"E.nW]
Ap—Ap [63] | [64] | [65] | [24] | this work
““Ne-™0O | 1.0 | 0.54 1 0.18 |0.173[ 0.755
““Ne-"0 0.37 |0.000 [ 0.085 ] 0.481
“Mg-"Ne| 0.76 | 0.42 | 0.66 | 0.11 {0.091] 0.411
“Mg-““Ne 0.20 |0.077[0.0658] 0.439
“S81-" Mg | 0.27 | 0.20 | 0.33 |0.076 | 0.080| 0.526
8- Mg 0.55 |0.067 |0.061 [ 0.555
5551 | 105 | 055 | 045 [0.090 | 0.082 ]| 0911
g SHe 0.065 [ 0.062 | 0.974
CAr-CS 0.070[0.061 | 0.936
SAr--S 1.30 | 0.034 | 0.020 | 0.997
MCa-""Ar| 1.56 | 0.86 | 1.1% [0.043|0.037 1




Inserting the complete set of the resonance WFs

1=2[%, ><¥y |
I
Into exp. (3) it Is easy to deduce the relationship:

1= gk_l_z CI?/II DCCIC/IIDC B Bk

Performing summation over k one can obtain:
ZSM DC — =dim|| k|

The sum rule of the “new” spectroscopic factors
corresponding to a fixed value of n (cluster
strength in 2hw domain turn out to be equal to
unity. Thus the statistical properties are described
accurately. That is critical for the dense spectra. In

average:
| 1
SM(E)DC ~p, (E)



GENERAL TRENDS OF THE SPECTROSCOPIC
FACTORS

Spectroscopic factors of a-clusters in 32S
states

L =0 ]

E [MeV]
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PAULI PRINCIPLE IN HEAVY CLUSTER SYSTEMS.
ARE FISSION AND FUSION CLUSTER PROCESSES?

An eigenfunction of any A-fermion Hamiltonian can be
presented in the form of a superposition of determinants
built up in terms of one-nucleon WFs or in terms of
another basis:

Y= X c, det{y, "}
N Y

N :Zini = I\Imin

min naa

No one transformation of the Hamiltonian and/or coordinates
violates this restriction rule.

Therefore the number N, IS a topological invariant for fixed
fermion number A. It is so-called “nodes theorem”.

And it is true for a system of bosons consisting of fermions.



The  Structural Forbiddenness of the Heavy
Fragmentation of the Atomic Nucleus. Smirnov YF,
Tchuvil 'sky YM, Physics Letters B, 134, 25 (1984).

32S example

The cluster channel WF containing the ground states
of clusters

| A{\P160¢nl (ﬁ)\P%O} >
S N . =44; O+°0 N__ =48 q=4
258FEm symmetric fission
g=48

In general the mass distribution of fission fragments is
In correlation with the g-value.



NUCLEON AS A QUARK CLUSTER. HIDDEN COLOR

Isobaric Component of Deuteron in Quark Model Smirnov
YF, Tchuvil 'sky YM, Journal of Physics G, 4, L1 (1978)

1 . . A .
oo - AY P (0)Y (3 ALY p(0)Y 3>+ 0
o0, =0.3+2.3%

N=~A

Is Deuteron a Six-Quark Model? Matveev VA, Sorba

P, Nuovo Chimento Letters, 20 435 (1977).
1 1

Q_N < A{‘PN¢(IO)\PN}| Z Qc,ijk

50 = d[Zl]d[Zl] /d[222]

A 4 (p)¥ ¢, }>=80%

Where dg Is the dimension of the Young frame [f] —
irreducible representation of the group of permutations
In the color space. No the distance dependence!



CLUSTER RADIOACTIVITY
The discovery and the history
1984, H. Rose, J. Jones 223Ra— 209Pb + 14C

1914, E Rutherford — No other heavy particles besides alpas
at the level 104

50t — 60t Geochemists — too much Ar in uranium ores.

End of 70" — A. Sandulescu demonstrated that the
penetrability of the cluster potential barrier is of the same
order as the alpha-particle one.

End of 70" — beginning of 80t — the group under the guide of
B. Novatsky (Kurchatov Center) searched for the effect and
confirmed the discovery in May 1985.



Known and promising examples
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NUCLEAR CLUSTERING IN AB INITIO APPROACH

Rodkin DM, Tchuvil'sky YM, Chinese Phys. C 44 124105
(2020); Phys. Rev. C 103, 024304 (2021).

Is 8Be a perfect cluster system?
Choice of bases is the following:
1. Conventional basis of NCSM — mod1.
2. Pure cluster one-channel basis (both “He clusters in GS,
truncation level — N ., = 0) — mod2.
3. Three- or two-channel basis incorporating the realistic
WFs of the first and the second 0* states of “He with
truncation level N ., =2 — mod3.
The results are obtained by use of NN-potential Daejeon16
which is built starting from N3LO forces (A.M. Shirokov, [.J.
Shin, Y. Kim et al, PLB 761, 87 (2016) are exploited. Code
Bigstick is used for shell-model computing. 25



CFF and SF are computed using the procedure
presented above.

The generalization procedure is the following. Right-lower
sub-matrix of (1) contains WF of different states of
fragments determining certain channels in this case:

I N lI=< @ (R)F 5 by ()W | A% [ D (R)W' 5 0 (B) W', >

After the diagonalization of it orthnormalized set of
coupled-channel A-nucleon cluster WF appear. The sum
of squared overlaps of the WF y, with these WF
provides a proper definition of the aggregate amount of
clustering.

Contrary to this definition ordinary SF may be called the
one-channel amount of clustering. 26



SPECTROSCOPIC FACTOR AND
AGGREGATE AMOUNT OF CLUSTERING

FOR a-PARTICLES IN 8Be NUCLEUS

N=6 | N=8 | N=10 | N=12 | N=14

a+a 0.765 | 0.866 | 0.861 | 0.875 | 0.880
a+a , a*+a 0.793 | 0.868 | 0.868
a+a, a*+a,a*+a *| 0.864 | 0.879 | 0.873

Daejeonl16 NN-potential

27




TOTAL BINDING ENERGIES OF %Be
NUCLEUS IN VARIOUS BASES

o
o
=

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIeIxR.III

TBE (MeV)

(4]
o

40

30

20

10

0
4 6 8 10 12
Ntot

Daejeonl6, hw =15 MeV. Red — modl, green — mod2,
blue — mods3. 28



ASYMPTOTIC CHARACTERISTICS (ANC and I') of

8Be and 7Li NUCLEI

The asymptotic characteristics are deduced using the

various R-matrix approaches.

To determine the position of the matching point R, of
the CFF and the asymptotic WF, the condition of
equality of the logarithmic derivatives is used:

F(r) W@k Fy(n) G ()

m1112 (2K G, (77,1)

F(r) W
=7F
Cop
E
2
=t

Rlmn) P(r)«1
GI (U’r)

Logarithmic derivatives
of CFF (solid line) and
function G,(p) (dashed
line) for 7/2~ state of 7Li
nucleus for 4He+3H
channel.



Therefore, the decay width of this resonance is given
by the expression:

rF(R,) 2
ANC = . [ KRy
W—r],|+l/2(2kRp) F'

k| G (R

If the resonance is wide, then the partial width is

calculated using the standard R-matrix theory
h? _
L', = E(F' (7,7)*+G (17,1)), 2 R (R,)’

For determining the decay width of subthreshold

resonance, we used the formulation of
(Mukhamedzhanov and Tribble,1999):

/ W? 2k, P
[y (B) = KR, (F, (1) + G, (7. 1)) il ")|ANCab|2

ab P



SPECTRA of 8Be and 7Li NUCLEI

J* T  Ey.iMeV Es_MeV E:_MeV(T) SF T, MeV T, MeV
0,0 56.25 0.0 0.0 (0) 0.870 7206V 557 (6.8)* eV
2+ 0 52.85 3,40 3.0340.01 (0) 0.849 117 1.513
44,0 14.63 11.62 11.3540.15 (D) 0.792 241 35
0.0 14,54 11.71 — 0.813  8.86 —

24,0001  42.00 14.16 — 0.715  3.57 —

25 0071 39.65 16.50  16.626£0.003 (0+1) 00025  0.019 0.108

21.0.078  39.05 1719 16.92240.003 (0+1) 0354  0.416 0.074

4+.0.001  37.48 18.76 — 0.288  3.30 —

2+.0.065  35.02 21.22 20.140.01 () 00450  0.434 0.8 (1.1)

0F.0.852  35.01 21.23 20.240.01 (0) 00208  0.056 0.7 (<1)

05,0315  34.44 21.80 — 00610 0.002 —

240,066  34.27 21.97 — 00030  0.002 —

44,0007 34.24 22.00 19.8640.05 (D) 0.441 5.13 0.7

oF 0.028 3357 29.70 29.2 (0) 0.059  0.135 0.8

2F 0.006  33.22 23.02 — 0.001  0.004 —

04,0017 32.01 23.33 — 0215  1.71 —

45,0007 32,60 23.55 — 0.0000  0.000 —




' Ewp Egee  EY EMT O ANC,[66] ANG,theor. ES® E™ | ] ANC,theor ANC, [T8]
] i |12 —1618 | 652
327 30245 3 2467 -2520 3574015 3 725 -763 -

32 30245 30110 246 0 357401 44 5169 1 gy g a0
. . | i | |12 -0331  —0540
- 38768 38270 —199  —169  30+0.15 295 67 681 g Tl s
J* Eap Eme EXY E™¢ T [14] T,theor E™ Efr [ [67] | J, T,(ANC,) theor. T theor [42]
7/ 34503 3409 2195 2172 0.060 0065 -239  —2938 312 0013 r,=0214

/2 32804 28921 3984 766 3IS[67) T4 —081[67] 255 0295keVP 0 12 0.54keVt
/7 32641 31610 4147 4971 0918 0564 —0D65 0139 | 32 0199 r,= 0783
5/- 31791 30816 4997 5765 DO33[67] 0797 0.2 0655 008 132 0053 r,=0210
| 12 0088
320 30495 28175 6293 8406 4T 0873 135 3206 D86T[10] 1 32 10 r,=170
112 023
/27 30.155 27280 6633 9301 2T 0282 184 4.191 1 32 10 ,=244
I, =043
7/ 20675 28489 733 8092 0437 0453 132 2,982 112 072keV T,=003
30 27.047 9.60 .25 4424 L 12 0785

PANCs (fm~12),
"T(E,=1¢V).
“Total decay width.



J*' T Eay By ESMOE T[4 SFy Ty(ANGyteor ESF ES SF. Tye(ANG) theor

Lit
/27 12 30055 27280 —0.885 1538 0.1465 0.343" — 1727 0.638 0.0433 (.259*
327 32 005 27247 1265 1571 0.260+0.35 01638 0.111 0433 0671 0377 0.117

IANCs (fm~ '),






