Разработка ускорителей электронов в НИИЯФ МГУ

к 75-летию НИИЯФ МГУ

В.И. Шведунов15 февраля 2021 г.

Этапы развития ускорительной тематики в ОЭПВАЯ

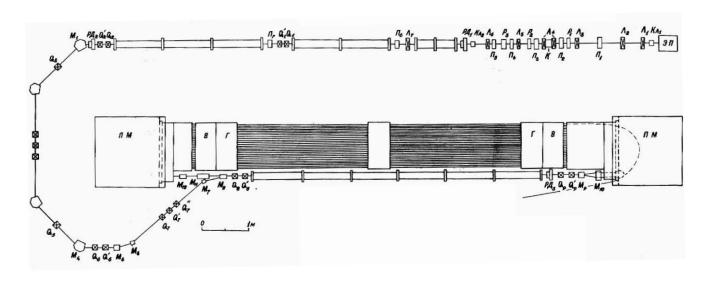
- **1. 1982 1985** поиск путей дальнейшего развития научных исследований в отделе, физическое обоснование необходимости создания ускорителя электронов непрерывного действия.
- 2. 1985 1992 разработка и реализация проекта разрезного микротрона непрерывного действия **для фундаментальных исследований**.
- **3. 1992 2012** международное сотрудничество, разработка **лабораторных образцов** ускорителей электронов прикладного назначения по различным **грантам**.
- **4. 2012 по н/в** разработка и создание **промышленных образцов** ускорителей прикладного назначения.

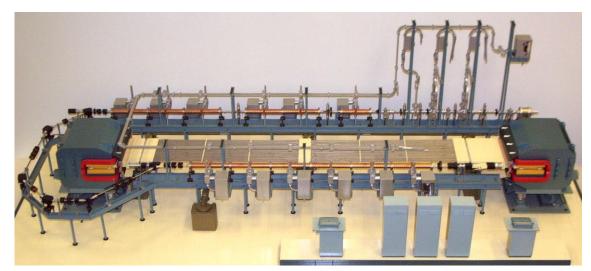
Ускоритель электронов для исследования фотоядерных реакций

Бетатрон НИИЯФ МГУ

Бетатрон НИИЯФ МГУ на энергию 35 МэВ к 1982 г. отработал 23 года. Его преимущества заключаются в простоте конструкции, возможности поимпульсного переключения энергии в широком диапазоне с малым шагом.

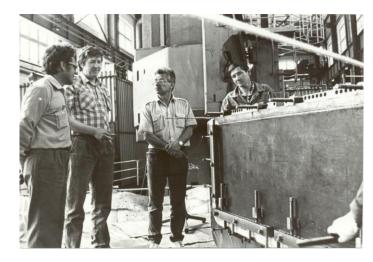
<u>Недостатки</u>. Низкая интенсивность — за цикл ускорения пучок проходит до 1500км, совершая около 500 тысяч оборотов. Из-за слабой фокусировки и низкого вакуума большая часть инжектированных в камеру бетатрона частиц теряется. В начале 80-х в отделе были проведены работы по увеличению интенсивности, но ...

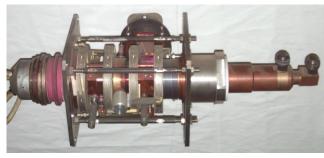

Импульсный характер излучения: 3 мкс, 50 Гц, скважность около 6700, т.е. из 8760 часов в году измерение выхода продуктов реакций производится только в течение 1.3 часа! Сеансы набора статистики длятся месяцами, что приводит к большим систематическим погрешностям, большим затратам материальных и человеческих ресурсов. Невозможны эксперименты на совпадение.


Необходим ускоритель непрерывного действия. Варианты: сверхпроводящие ускоряющие структуры, нормальнопроводящие структуры, растяжители (стретчеры) пучка. Выбран вариант нормальнопроводящего разрезного микротрона.

Организация Б.С. Ишхановым работ по созданию разрезного микротрона непрерывного действия НИИЯФ МГУ

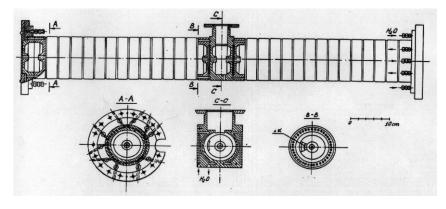
- В 1985 г. принято решение Ученого совета НИИЯФ МГУ о реализации проекта.
- К работам привлечена большая часть сотрудников отдела, студенты, аспиранты и сотрудники кафедры ускорителей и других кафедр физического факультета, различные службы института (механические мастерские НИИЯФ МГУ и физического факультета, КБ НИИЯФ МГУ, служба главного инженера, отдел снабжения, первый отдел ...).
- В отделе созданы две группы ускорительная и группа контроля и управления, проводились регулярные совещания.
- Установлены контакты с различными организациями СССР, которые могли оказать помощь в создании ускорителя: НИИ «Титан» (сейчас НПП «Торий»), НПО «Исток», НИИФА, ОИЯИ, ФИАН, МИФИ, ИЯИ АН, ИФВЭ, ЕрФи, Саратовский гос. университет, СКБ (Харьков).
- Получено адекватное финансирование. По сегодняшним ценам стоимость приобретенного стандартного оборудования и материалов, стоимость изготовленного оборудования заметно превышает 1 млрд. руб.
- Построены два новых ускорительных зала. Дооснащены мех. мастерские отдела. Получены новые помещения в 19 корпусе.

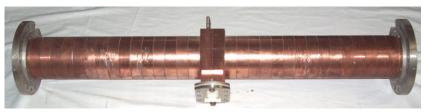

Схема и макет разрезного микротрона



Энергия инжекции	6 МэВ
Прирост энергии	6 МэВ
Максимальная энергия	175 М эВ
Средний ток пучка	100 MKA
Рабочая частота	2450 МГц
Поле магнитов	1.027 T
Мощность клистронов	22 кВт
Число клистронов	12+1

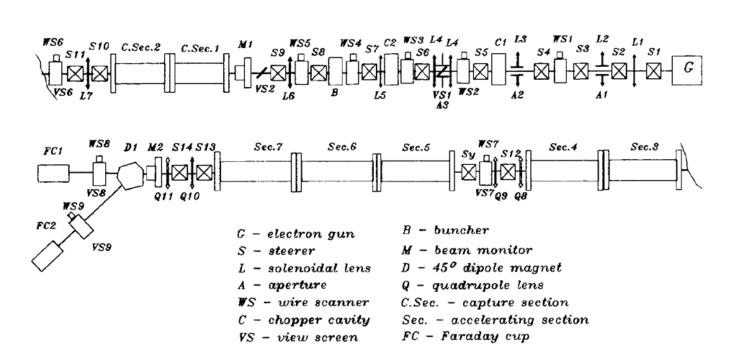
Изготовление элементов разрезного микротрона





Многолучевой клистронЧастота2450±10 МГцМакс. мощность22 kWЧисло лучей18

Фокусировка постоянными магнитами



Ускоряющая структура на стоячей волне Рабочая частота Эффективное шунтовое сопротивление Темп набора энергии

2450 МГц 76 МОм/м 1 МэВ/м

Поворотный магнит
Магнитное поле 1.03 Т
Вес магнита 18 т

Ускоритель электронов непрерывного действия на энергию 6.2 МэВ — инжектор разрезного микротрона.

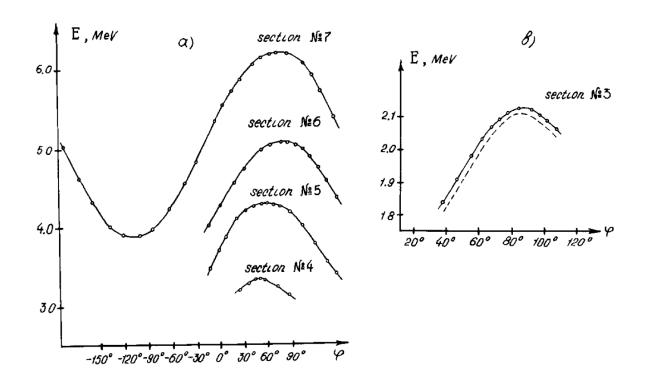
Параметры инжектора.

Максимальная энергия пучка 6.2 MeV

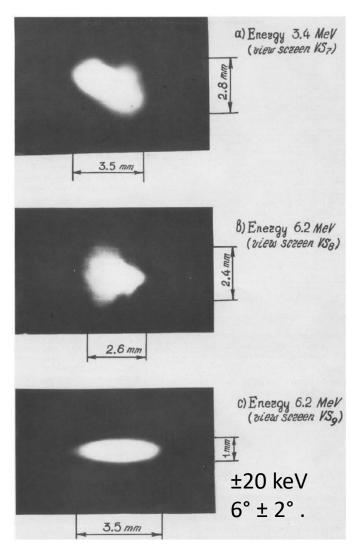
Максимальный средний ток пучка 1 mA

Монохроматичность ±0.3%

Длина сгустка 4 рѕ


Нормализованный эмиттанс 5 mm*mrad

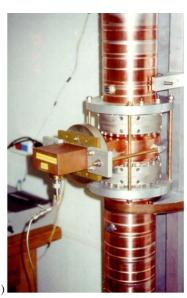
Длина ускорителя 12 m


Потребляемая мощность 400 kW

Ускоритель электронов непрерывного действия на энергию 6.2 МэВ — инжектор разрезного микротрона.

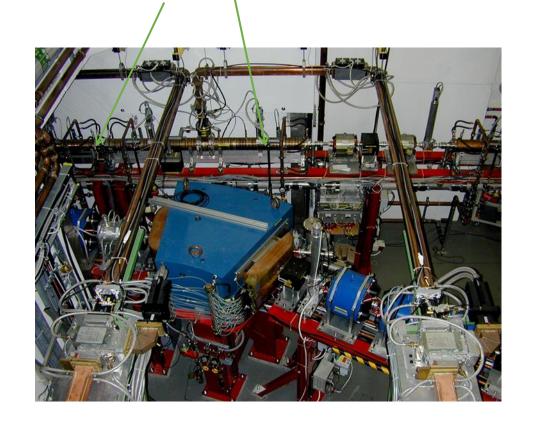
В 1992 г. инжектор электронов разрезного микротрона был введен в действие, на нем были выполнены эксперименты по неупругому рассеянию фотонов ядрами и по взаимодействию электронного пучка с кристаллами.

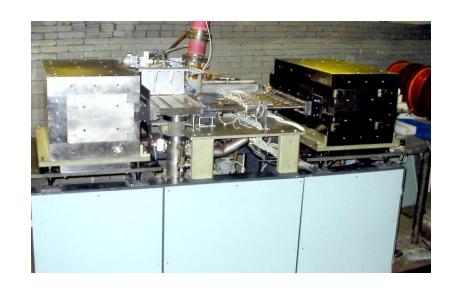
Зависимость энергии на выходе секций от фазы поля. NIM A326 (1993) 391-398



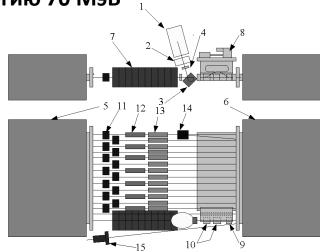
Изображения пучка

1993 – 2002. Сотрудничество с Институтом ядерной физики, университета г. Майнц


Upgrade инжектора MAMI, участие в разработке и реализации проекта MAMI-C

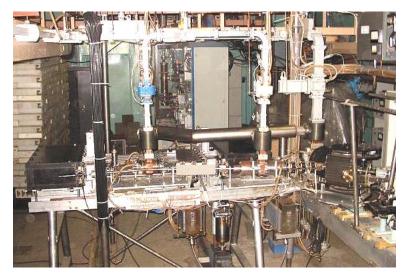

Секция ускоряющей структуры двухстороннего микротрона непрерывного действия, 2450 МГц, 2.02 м

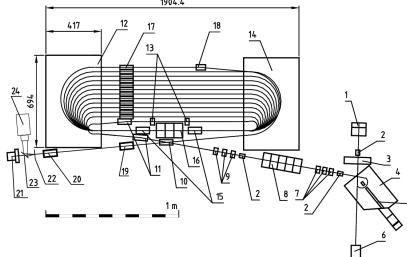
Секции, установленные в двухстороннем микротроне непрерывного действия МАМІ-С на энергию 1.5 ГэВ, Институт ядерной физики, г. Майнц, Германия



1992-2004. Сотрудничество с World Physics Technologies (США)

Импульсный разрезной микротрон на энергию 70 МэВ


- -Большие поворотные магниты с уровнем поля
- ~1 Т на основе редкоземельных магнитов (РЗМ)
- Прямоугольная ускоряющая структура с высокочастотной квадрупольной фокусировкой
- Устройство регулирования длины первой орбиты
- Компактные квадрупольные триплеты на основе P3M
- Автоколебательная система СВЧ питания

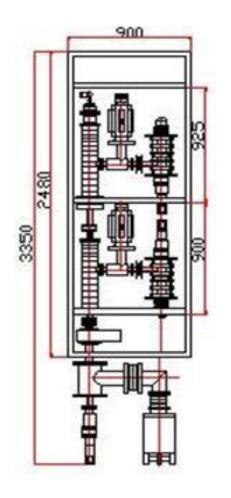


Энергия инжекции	48 кэВ
Прирост энергии/оборот	4.8 МэВ
Число орбит	14
Энергия на выходе	14.8 - 68.3 МэВ
Ток пучка	40 - 5 MA
Кратность	1λ/орбиту
Рабочая частота	2856 МГц
Импульсная мощность клистрона	6 МВт
Уровень поля	0.963 T
Размеры	2.2x1.8x0.9 m ³

1992-2004. Сотрудничество с World Physics Technologies (США)

Ускоритель с большой яркостью пучка на энергию 35 МэВ

	Прирост энергии	2.43 M ₂ B
	Энергия на выходе	4.85-34.2 M ₃ B
	Нормализованный эмиттанс	10 мм мрад
	Продольный эмиттанс	200 кэВ град
	Длительность сгустка	5 пс
5	Частота повторения	1-150 Гц
	Заряд сгустка	150 пК
	Рабочая частота	2,856 МГц
	Импульсная СВЧ мощность	<3 МВт
	Поле магнитов	0.486 T


Энергия инжекции

4.85 M₃B

- инжекция высокоэнергетичных сгустков от СВЧ пушки и линейного ускорителя;
- поворотные магниты на основе редкоземельного магнитного материала;
- вакуумная камера с подавлением когерентного синхротронного излучения.

1992-2004. Сотрудничество с World Physics Technologies (США)

Компактный линейный ускоритель электронов непрерывного действия на энергию 1.2 МэВ и мощность пучка 60 кВт

Энергия пучка	1.2 МэВ
Ток пучка	0 - 50 мА
Максимальная мощность	60 kW
Напряжение питания клистрона и пушки	15 kV
Рабочая частота	2450 МГц
Мощность клистрона	50 кВт
Потребляемая мощность	~150 kW
кпд	~40%

2004 – 2011. Сотрудничество с ФИАН и Valley Forge Composite Technologies (США).

Импульсный разрезной микротрон на энергию 55 МэВ

Энергия инжекции	50 кэВ
Прирост энергии/оборот	5 M3B
Число орбит	10
Энергия на выходе	55.6 МэВ
Ток пучка	20 мА
Кратность	12/орбиту
Рабочая частота	2856 МГц
Импульсная мощность клистрона	6 МВт
Уровень поля	1.0 T
Размеры	2.5x1.8x0.9 m ³

Ядерная физика.

Детектирование взрывчатых веществ.

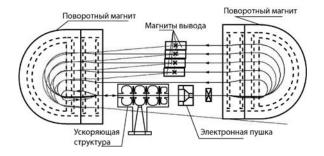
Наработка ПЭТ изотопов.

Активационный анализ.

2005 – 2012. Сотрудничество с Политехническим университетом Каталонии

Проект ускорителя электронов для интраоперационной лучевой терапии

• Основные характеристики:

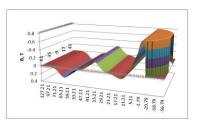

✓ Энергии пучка:
 б, 8, 10, 12 МэВ
 ✓ Ток пучка:
 ~10 пА – 10 µА

✓ Рабочая длина волны 5 см
 ✓ СВЧ мощность: ~800 кВт
 ✓ Мощность дозы: 10-30 Гр/мин

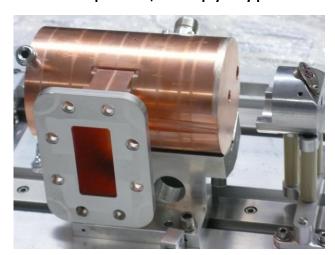
✓ Ускоряющее устройство:

Размеры: 50 x 20 x 11 см

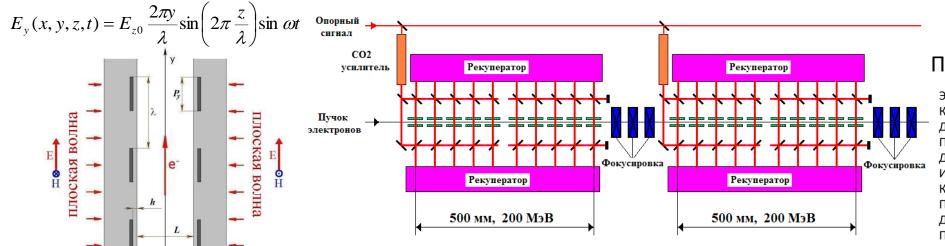

Схема разрезного микротрона

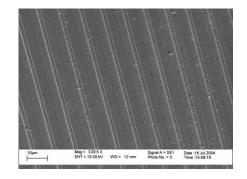


Сборка разрезного микротрона



Изготовление и настройка магнитов


Ускоряющая структура


Электронная пушка

1998 – 2005. Лазерное ускорение в вакууме в ближней зоне

Дифракционная ускоряющая структура

Дифракционная решетка на 10.6 мкм

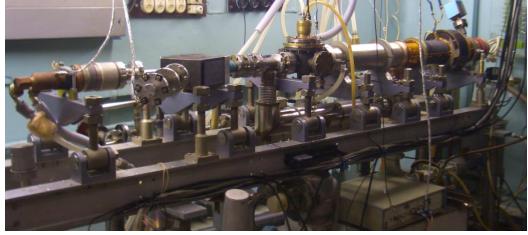
Схема ускорителя

 CO_2 лазер, 10.6 мкм, 1 Дж

Параметры ускорителя на 10 ГэВ

	Энергия ускорителя	10 ГэВ
	Количество секций в суперсекции	80
-	Длина секции	3 mm
	Прирост энергии в суперсекции	200 МэВ
	Длина суперсекции	0,5 м
	Импульсная мощность на суперсекцию	1,44 ТВт
	Количество суперсекций	50
	Полная длина ускорителя	30 M
	Длительность импульса	10 пс
	Полная импульсная мощность	72 ТВт
	Полная энергия импульса	720 Дж
	Импульсная мощность пучка	0,16 ТВт

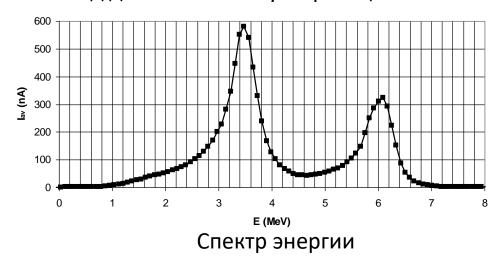
Измерения прототипа на 20 мм

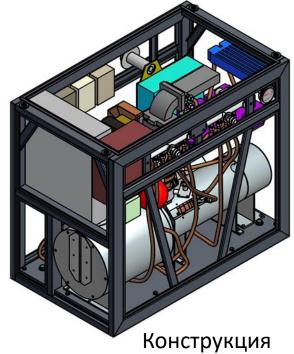

2004 – 2005. Сотрудничество с ФГУП «НПП «Торий» по теме «Станция»

Прототип линейного ускорителя для радиационных технологий на энергию 10 МэВ

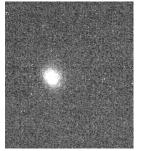
Параметры:

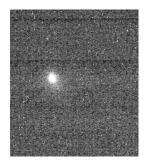
Энергия пучка	10 M ₂ B
Импульсный ток	430 мА
Средняя мощность пучка	15 кВт
Рабочая частота	2856 МГ
Импульсная мощность клистрона	6 MB T
Средняя мощность клистрона	25 кВт
Полный кпд	20%



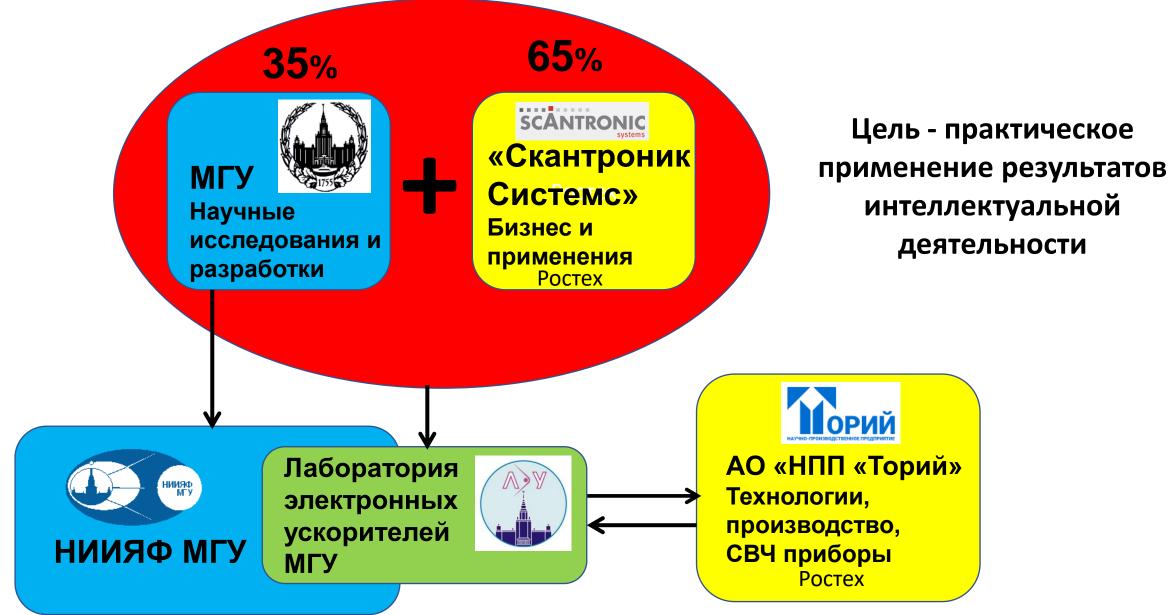

2007 – 2009. Сотрудничество с ФГУП «НПП «Торий» по теме ИДК

Прототип линейного ускорителя с поимпульсным переключением энергии для стационарного инспекционно-досмотрового комплекса по заказу компании Smiths Detection (США, Германия, Франция).


Стенд для испытаний ускоряющей системы



Излучатель в сборе

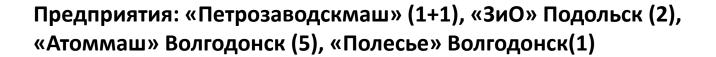


Изображения пучка

В июне 2013 г. на базе ОЭПВАЯ НИИЯФ МГУ создана Лаборатория электронных ускорителей МГУ (ФЗ 217)

Некоторые применения электронных ускорителей

Применение	Область энергий	Важные параметры	Количество
Фундаментальные исследования	5 MэB − 140 ГэВ → 500 ГэВ → → 3 ТэВ →	Энергия, светимость, яркость, скважность, монохроматичность и др.	~ 100
Источники синхротронного излучения	0.3 – 8 ГэВ	Накопленный ток, время жизни пучка, яркость, спектр излучения	~70
Медицина: лучевая терапия, производство изотопов	4 МэВ – 50 МэВ	Надежность, контроль радиационного поля	~9000
Технологические процессы в промышленности	0.1 МэВ – 10 МэВ	Надежность, средняя мощность, эффективность	~1000 - 2000
Стерилизация, дезинсекция, очистка воды, и т.п.	5 МэВ – 10 МэВ	Надежность, средняя мощность, эффективность	~200-300
Досмотровые комплексы, дефектоскопия	2.5 МэВ– 10 МэВ	Надежность, параметры радиационного поля	~500


К настоящему времени ЛЭУ МГУ разработала и совместно с АО «НПП «Торий» поставила заказчикам следующие электронные ускорители:

	Всего:	43
-	Медицина	1
-	Стерилизация	2
-	Железнодорожные ИДК	4
-	Мобильные ИДК	15
-	Стационарные ИДК	12
-	Радиография	9

Работа ускорителей для радиографии на предприятиях Росатома

Электронные ускорители с поимпульсным переключением энергии для инспекционно-досмотровых комплексов

Стационарный

Мобильный

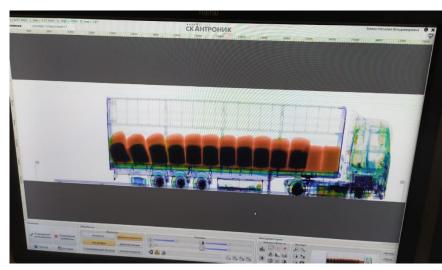
Железнодорожный

КИУ-168

Энергия Стабильность энергии Мощность дозы, до Частота следования имп., до 3.5/6 МэВ 0.3% 10 Гр/мин

2 kHz

Клистроны и ускоряющие системы для 10 - см и 5 см - диапазонов


Стационарный ИДК СТ-6035 «Скантроник Системс»

Система сканирования

Ускоритель

Изображение объекта

http://www.scantronicsystems.com/st6035_ru/

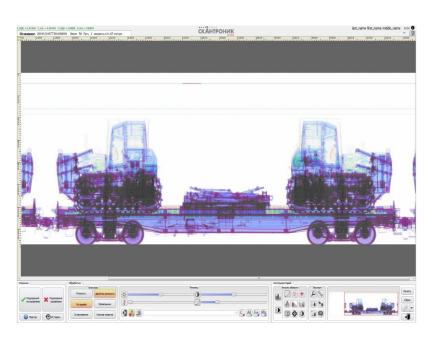
Мобильные ИДК CT-2630M «Скантроник Системс»

Опытная эксплуатация силами ФТС 13 комплексов на пограничных пунктах пропуска с 2018 г.

Презентация нового варианта мобильного ИДК «Скантроник Системс», 2020 г.

Внутри ускорителя

https://rostec.ru/news/rostekh-predstavil-novyy-inspektsionno-dosmotrovyy-kompleks-na-shassi-kamaz/


Железнодорожный ИДК CT-2630T «Скантроник Системс»

Двухпутевой ж-д ИДК

Ускоритель

Изображение

http://www.scantronicsystems.com/st2630t_ru/

Импульсный линейный ускоритель на энергию 10 МэВ

Ускоряющая система

Клистрон и модулятор

Главной особенностью ускорителя является возможность варьирования параметра выходного пучка в широких пределах в зависимости от обрабатываемого продукта, что обеспечивает высокую эффективность использования мощности пучка, возможность работы с низкими и высокими дозами, сообщаемыми продукту. Параметры работы ускорителя устанавливаются автоматически в соответствии со спецификацией продукта.

Система контроля и источники питания

Энергия пучка	5 - 10 МэВ
Импульсный ток	430 mA
Длительность импульса	4 – 12 мкс
Частота следования имп.	50 – 400 Г⊔
Средняя мощность пучка	1 - 15 кВт
Рабочая частота	2856 МГц
Длина структуры	1.24 м
Импульсная мощность клистрона	6 МВт
Средняя мощность клистрона	25 кВт
КПД от розетки	20%
Ширина сканирования	40 - 80 см
Частота сканирования	1 – 30 Гц

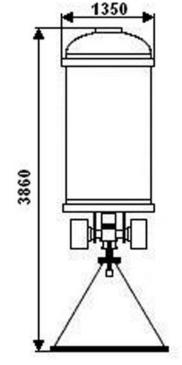
Центр антимикробной обработки продукции компании Теклеор (Калужская область)

Оборудование ускорителя

Здание центра

Академик Ю.В. Гуляев и губернатор Калужской области А.Д. Артамонов на открытии центра, сентябрь 2017 г.

https://www.tecleor.com/en/

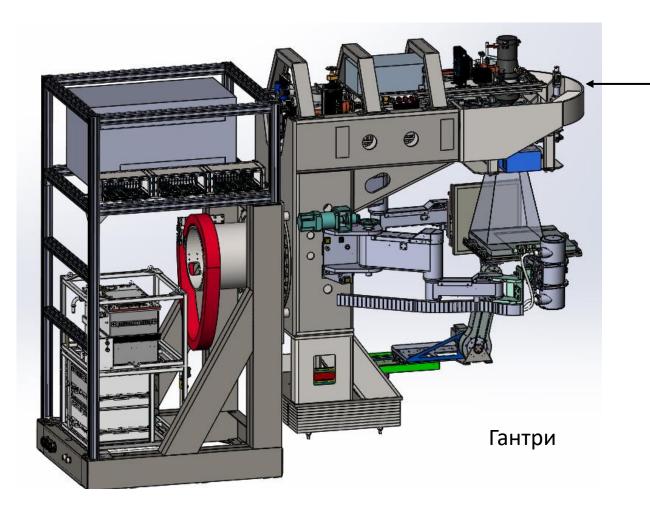

Ускоритель электронов непрерывного действия на энергию 1 МэВ

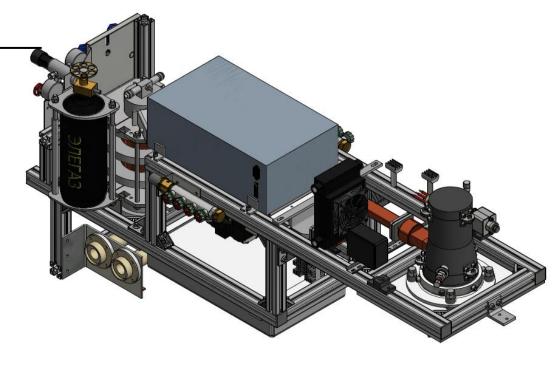
470 x 784 x 1375 mm¹⁾

Энергия пучка	1 MeV
Средний ток ручка, тах	25 mA
Средняя мощность пучка, тах	25 kW
Рабочая частота	2450 MHz
Средняя мощность клистрона	50 kW
КПД от розетки	30%
Ширина развертки	80 cm

1)Без развертки и источника питания

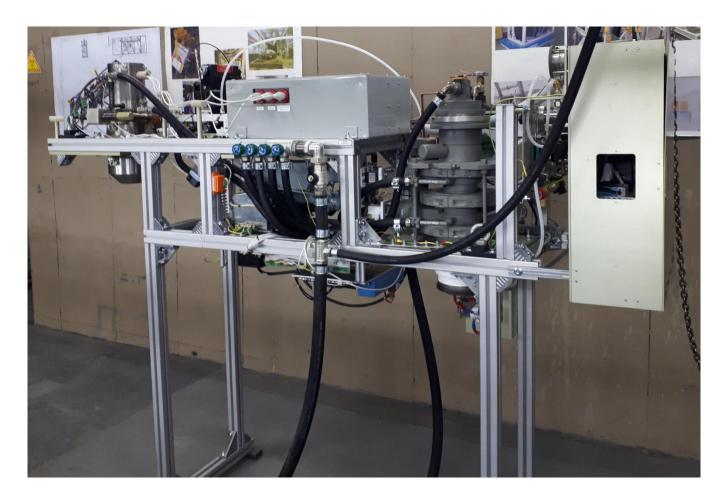
Размеры ускорителя

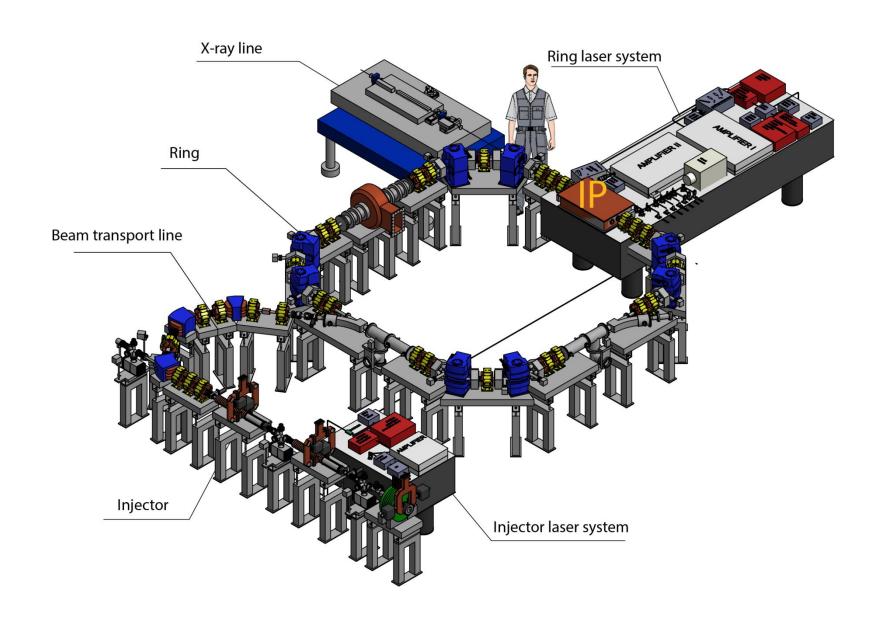

Комплекс лучевой терапии КЛТ 6 (Оникс)


Разработку линейного ускорителя провела ЛЭУ МГУ по контракту с НИИТФА

Параметры ускорителя

Энергия пучка Мощность дозы


2.5/6 МэВ 10 Гр/мин


Ускоритель

Ускоритель для комплекса лучевой терапии КЛТ 6

Испытательный стенд

Проект лазерно-электронного генератора рентгеновского излучения

Заключение

За 35 лет исследований в области ускорителей заряженных частиц в НИИЯФ МГУ пройден путь от разработок больших ускорительных комплексов для фундаментальных исследований, проведения поисковых работ в области физики ускорителей, до создания и выпуска прикладных ускорителей для систем безопасности, промышленности и медицины.

Опыт, аккумулированный в институте, позволяет разрабатывать образцы ускорителей, превосходящие по своим характеристикам известные аналоги.

Парк ускорителей электронов, созданный в НИИЯФ МГУ, позволяет проводить широкий круг исследований в области ядерной физики и радиационных технологий.