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Abstract

We solve exactly the equations of motion for linearized gravity in the Randall-
Sundrum model with matter on the branes and calculate the Newtonian lim-
it in it. The result contains contributions of the radion and of the massive
modes, which change considerably Newton’s law at small distances. The ef-
fects of "shadow" matter, which lives on the other brane, are considered and
compared with those of ordinary matter for both positive and negative tension
branes. We also calculate light deflection and Newton’s law in the zero mode
approximation and explicitly distinguish the contribution of the radion field.
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Annoramuga

Haitjilenbl TOuHbIE pellleHusi ypPaBHEHUN JIBUXKEHUS JIJisd JIMHEAPU30BAHHOM
rpapuTaruu B Mojesnu Poanpasm-Cysapyma ¢ marepueit na Opanax u ee
HbroHoBCcKuit npejies. Pe3yiabrar comep»XuT BKJIAJIbI PAJIMOHA U MACCUBHBIX
MOJI, KOTOPbIE CYIIECTBEHHO MEHSIOT 3aKOH HbhIOTOHA Ha MAaJIbIX PACCTOSTHUSIX.
Paccmorpennr  addektor  "renepoit" wmarepum, HaxojsIedicss Ha  JAPyroif
OpaHe, 1 NPOBEJIEHO WX CpaBHEHHE ¢ FPdeKTaMu OObIYHONW MaTepuu Kak JJIs
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1 INTRODUCTION

The present-day approach to Kaluza-Klein theories is based on the idea due to
Rubakov and Shaposhnikov of localization of fields on a domain wall [1, 2]. In
a first step it is natural to drop the mechanism of localization of fields and to
treat the domain wall as an infinitely thin object, i.e. as a membrane, and to
consider the effects due to the gravitational interaction of such 3-branes.

A particular realization of this scenario was proposed in paper [3]. In this
paper an exact solution for a system of two branes interacting with gravity
in a five-dimensional space-time was found. This model is called the Randall-
Sundrum model (usually abbreviated as RS1 model), and it is widely discussed
in the literature (see Refs. [4, 5] for reviews and references). A consistent anal-
ysis of this model without matter on the branes was made in [6]. However, the
equations of motion for metric fluctuations, when there is matter located on the
branes, have not been studied in detail yet. In paper |[7] the Randall-Sundrum
model with matter on the branes was discussed for the cases of both one and
two branes (the former is usually called RS2 model). This paper utilized the
Gaussian normal coordinates and the bent-brane formalism, which was argued
to be inconsistent in RS2 model in paper [8]. Moreover, the use of Gaussian nor-
mal coordinates mixed the contributions of the graviton and the radion fields
to the four-dimensional gravitational field. In the present paper we will decou-
ple the equations for the graviton and the radion fields and solve exactly the
equations of motion for the RS1 model with matter on the branes. Then we
will calculate the Newtonian limit in this model and the light deflection by a
point-like mass in the zero mode approximation.

The Randall-Sundrum model [3] describes the gravity in a five-dimensional
space-time F with two branes embedded into it. We denote the coordinates by
{2M} = {2+, y}, M = 0,1,2,3,4, u = 0,1,2,3, the coordinate * = y parame-
terizing the fifth dimension. It forms the orbifold S!/Z,, which is realised as the
circle of the circumference 2R with points y and —y identified. Correspondingly,
we have the usual periodicity condition in space-time E, which identifies points
(z,y) and (z,y + 2nR), and the metric gy n satisfies the orbifold symmetry
conditions

g/ﬂ/(xv _y) = g,uy(x, y)7 (1)
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gua(z, —y) = —gu(z,y),
944(11?, —y) = 944(37, y)

The branes are located at the fixed points of the orbifold, y = 0 and y = R.
The action of the model is

S =S, + 51+ S, (2)
where S;, S; and Sy are given by
1
S, = — | (R=A)v/—=gd'zdy, 3
y = = [ (R-n)v=galady ®)

51 = Vi [ Vas(wd'sdy
E

S = Vg/\/—gé(y—R)d‘lxdy.
E

Here §,, is the induced metric on the branes and the subscripts 1 and 2 label

the branes. We also note that the signature of the metric gj;n is chosen to be
(—-1,1,1,1,1).
The Randall-Sundrum solution for the metric is given by

d82 == gMNd,fEMde'N = e2a(y)77uyd£l?'ud£l7y + dy27 (4)

where 7,,, is the Minkowski metric and the function o(y) = —k|y| in the interval
—R <y < R. The parameter k is positive and has the dimension of mass, the
parameters A and Vj o are related to it as follows:

3k
4r G

We see that brane 1 has a positive energy density, whereas brane 2 has a
negative one. The function ¢ has the properties

A=—-12k% Vi=-Vo=—

oo = —ksign(y), —— = —2k(6(y) —d(y — R)) = —2k4. (5)
=90
= 5,

We denote & = V167G, where G is the five-dimensional gravitational con-
stant, and parameterize the metric gysn as

Here and in the sequel 04

gMN = YMN + khynw, (6)
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han being the metric fluctuations. Substituting this parameterization into (2)
and retaining the terms of the zeroth order in &, we get the second variation
action of this model [6]. It is invariant under the gauge transformations

/J\/_IN(ZUay) :hMN($7y)_ (VMEN($7y)+vN£M($7y))7 (7)

where Vs is the covariant derivative with respect to the background metric
ymn, and the functions Ex(z,y) satisfy the orbifold symmetry conditions

38 (xa _y) = & (ZE, y) (8)
£4 (567 _y) - _54 (377 y) :

With the help of these gauge transformations we can impose the gauge

h'u4 = 0, h44 = h44(£l?) = ¢($), (9)

which will be called the unitary gauge (see [6]). We would like to emphasize
once again that the branes remain straight in this gauge, i.e. we do not use the
bent-brane formulation, which allegedly destroys the structure of the model
(this problem was discussed in [8]).

The general form of interaction with matter is standard,

g / W (z,0)T,,dz + g / W (2, R)T,,v/—72dz, (10)
B B,

where TI}V and Tlf,, are energy-momentum tensors of the matter on brane 1 and

brane 2 respectively:

As follows from formula (10), Ay, is the only physical field of the model, since
only this field interacts with matter on the branes. Obviously, the unitary gauge
conditions (9) do not fix the gauge of this field. In fact, after imposing these
gauge conditions there remain gauge transformations of the form

fu — 620611(37)7 (11)

which change the longitudinal components of the field h,,. Nevertheless, it
turns out that it is convenient to solve the equations of motion for linearized
gravity in the unitary gauge and then to choose an appropriate gauge in our
four-dimensional world on the brane. We will use the de Donder gauge for the
field h,, on the branes, which corresponds to the choice of harmonic coordi-
nates.



2 NEWTONIAN LIMIT

The equations of motion for different components of the metric fluctuations in
the unitary gauge take the form (see [6]):
1) pr-component

1 2h,
5 (a,,aﬂh,w — 0,0"h,, — 0,0"h,,, + %> — (12)

Ozt

1. .- 1
— 2k*h,, + 58,,,8”11 + 5(9”8,,(;5 +

2j,
+ %’y,w <8 0% hye — 0,0° h— 5— — 404004h — O ,0° 9 + 12k2q§>
x4

~

K
—=T,,

+ [2khy, — 3kv,,¢] 0 = 5

2) pd-component,
O4(0,h — 0"hy,) — 30400, = 0, (13)

which plays the role of a constraint,
3) 44-component

1 . N
—(0"9"h,,, — 0,,0"h) — §840(94h + 6k%¢p = 0, 14
2 o o 92

with T, being the energy-momentum tensor of the matter and h = Y by
In what follows, we will also use an auxiliary equation, which is obtained by
multiplying the equation for 44-component by 2 and subtracting it from the
contracted equation for pr-component. This equation contains A and ¢ only
and has the form:

2
g f; + 204004k — 8k2¢ + 8k + 0,01 = —T“ (15)
xr

If T),, = 0, the physical degrees of freedom of the model can be extracted
by the substitution [6]

1 |
hlﬂ/ = b/“/ + ’)’/w( )Qs + —= 2k2 (O’ —c+ 5 + 56 ) auayqﬁ. (16)

with ¢ = 5. Tt turns out that the field by, (2#,y) describes the massless
graviton [3 9] and massive Kaluza-Klein spin-2 fields, whereas ¢(z) describes a
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scalar field called the radion. Apparentely, the radion field was first identified
in Ref. |10] (see also [11]) and discussed in [12, 13, 14, 15].

However, the situation is rather different, when there is matter on the branes.
Let us first consider the case, where matter is located on the brane at 0, i.e. the
energy-momentum tensor is of the form 7}, = ¢,,(z)d(y). The substitution,
which allows one to decouple the equations, looks like

1 1
Py =ty + Yo — c)p + 252 (0 —c+ 3 + ce%R) 0,0,0. (17)

After this substitution equations (13), (14) and (15), rewritten in the flat metric
(i.e. u = n*uy,), take the form:

O1(e™*° (0" uy,, — Oyu)) =0 (18)
e~ (00" uy, — Ou) — 304004(e*7u) + 3ce®~270¢ = 0 (19)
04(e*°04(e™ %)) + 2%5(@/) [e2FR — 1] O¢ = gt;; 5(y). (20)

Let us consider Fourier expansion of all terms of equation (20) with respect
to coordinate y. Since the term with the derivative 04 has no zero mode, this
equation implies that

~

O¢p=—t, t=t! 21
b=t b=t (21)
O4(e”*u) = 0. (22)

From the last equation and equation (18) it follows that
0wy, = ¥ A,(z), (23)
B = ¥ B, (z), (24)

where A, (z) and B,(z) depend on four-dimensional coordinates only. It is easy
to see that the remaining gauge transformations (11) allow us to impose the de
Donder gauge condition on the field u,,

1
0" <uW — 577“,,71) = 0. (25)

Having imposed this gauge, we are still left with residual gauge transformation
¢, =e”¢,(z), Oe,=0. (26)
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The gauge transformations with , satisfying these conditions are important
for determining the number of degrees of freedom of the massless graviton. It
follows from equation (19) that

oy Kk

— ot (27)

Lu=¢e

Now let us consider pr-equation. After substitution (17) and in the de Donder
gauge it takes the form

1 1
56_2‘7Duuy + 58484%,, — 2k2uW — 04040uy, = (28)
K kk 0,,0
= ——fub v+ 22t
2 ) + o — (77” 5 )
where . 5.6
4 _ OuOy
S =t = 5 (= 22 (29

One can see that f,, is transverse-traceless. Here and below the inverse
d’Alembertian is an integral operator uniquely defined by the radiation condi-

tions.
To solve this equation, we make the following substitution
Kk 20—1 90,
Uy = Vp + 61— 6—2kR)e O (n,“, + ZT t (30)
which does not violate (25) that takes the form
0" =0, (31)
v, =0
Substituting (30) into (28), we get
1 o, 1 92 9 0? K
56 D’UMV + 58—312@’“/ — 2k 'U'w/ — a—y20"l)l“/ = _§fl“/6(y) (32)

This equation can be solved exactly. To this end, let us first perform Fourier
transform of the field v,, with respect to the z-coordinates

1 920 2\ ~ ]_ 82 ~ 2~ 82 ~ ’% -~
3¢ (=p°) 0w + 2920 2k"0 — 9270 = —§fuu5(y), (33)

where p? = —p? + p*.



First let us solve this equation in the bulk (see [6], [9]). Here the solution of
equation (33) looks like

/|n2 /|2

17/“/(27, y) = C/JI/JQ <%eky> + D/“,NQ (Tp|€k|y|) ,p2 <0 (34)
/| m2 /| m2

77/11/(]77 y) = C,uVIQ <—p|€k|y) + D'uyK2 <—p|€k|y|) ,p2 >0 (35)

k k

Substituting it into equation (33) and comparing the terms at the boundaries,
we get the values of the constant tensors C),, and D,,. Having got them, we
obtain the solutions of the ur-equation with matter on the positive tension
brane:

Dp? <0

k
L) (o

Since we want to calculate the Newtonian limit, fu,, is proportional to é(pp) in
this case. It means, that we need the solution for p? > 0.

When matter is on brane 2 (at y = R), all the reasonings are the same, as
presented above. The full substitution looks like

h'w, = Uy + 62077;“/(0 - C)d) + 55 92 (U + ) 0 aud)a (38)

kk 90 ——1 0,0,
—G(esz—l)e [ (77“,, . t.

9
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The gauge conditions are the same too. The equations of motion for the field ¢
and solution for the field v, with matter on brane 2 can be derived analogously

and read .
Cp = —t 39
6=, (39
Hp? <0
5 - 1 Pubv \ = ko1
Uuu(pa y) = ltul/ - 3 (77,uu - ;2 ) t] 9 _p2€k—R X (40)
N, (_\/;ﬁemm) 7, (\/ﬁ) _J, <_\/;pzek|y|) N, (_\/;P>
X )
Jl < I;p2> Nl < ;p2 ek:R) _ Nl ( ];p2> Jl (\/ ];pQ ekR)
2)p? > 0
N - 1 pubv\;l K 1
'U,ul/(pa y) - - [t/w - g (nm/ - ;2 > t] /P okR X (41)

(8} () e (£2)5 ()
(@ (8r) - (En (8)

An important point is that these equations are written in the coordinates {x*},
which are Galilean on brane 1 (not on brane 2) and are inappropriate for study-
ing physical effects on brane 2 (we recall that coordinates are called Galilean,
if 9 = diag(—1,1,1,1) [16]).

Obviously, when there is matter on both branes, the solution for the metric
fluctuation is just the sum of solutions for each brane separately, which follows

X

from the linearity of the equations.

Now let us examine the four-dimensional theory on the branes. First we
consider the case when matter and observer are located on brane 1. It is easy
to see that hy, (17), (30) does not satisfy the de Donder gauge condition. The
residual gauge transformations (26) are not sufficient to pass to this gauge. But
since we consider only the effective theory on brane 1, we can drop the e, = 0
condition, which fixes the gauge for the field v,,. Then we can pass to the de
Donder gauge condition for the field h,, on brane 1 with the help of the gauge
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functions of the form

1/ R 1 kR (9
w (2k k) O+ w1 (42)

Having been made, these transformations result in

88

/“/|y 0= 'UuV|y 0 1 v (43)

This formula gives the four-dimensional gravitational f1eld on brane 1, and it
takes into account the contributions of the massless and of the massive gravitons
and the contribution of the radion.

Now let us calculate the Newtonian limit in this case. Let us consider a
static point mass with energy-momentum tensor tgg = M(Z), tor, = tij =0
(and fgg = 2mM&(pg)), M denoting the inertial mass. We need to calculate
only hgo-component of the metric fluctuations (see (37))

o ()0 (Fe) +n (F) <fkR>><<44>

Foo(p, 0) = ij ( )K1 (@em> iy (@e’%) K, (ﬁ)

4

X?M(S(p(])
and
1 & M
h 0) = 0) — kR———, 45
00(567 ) UOO((‘Ua ) AT 6R T ( )
(see (43)) where r = V&2 and
1 X sk 4
voo(z,0) = ) /e TP oo (p, 0)d p. (46)
Using the last relation and equation (44) one can easy find that
1 4rdn >
0) = ——M ' d 47
wle0) = g M [ osinGripa, (47)

£ K () (1) + 1y (1) K (1)
9(p) = 21, (B) Ky (BeFR) — I, (EebF) Ky (B)

where p = /p2. It is impossible to evaluate the integral in (47) analytically.
But we can estimate the integrand in the following cases: 1) p << e *fk, 2)
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e *RE << p << k and 3) k << p. Using these estimates in the intervals
0<p<e B e *p < p<kand k < p < oo respectively, we can estimate

the integral in equation (47).
resent the factor g(p) in the integrand in the following form
SR (BN L0 (B )

First, utilizing the recurrent relations for the McDonald functions, we rep-
Kk
2013 (1) Ko (167) 1o (i) A ()

g\pP) = —=5 — 5=
() p
With the help of this transformation we have picked out the contribution of
the zero mode to vgg. Substituting asymptotic formulas for McDonald functions

into (48), we get
o | @y~ maeem n (§) 5 p<< ek
N —+ | —ain () e FlE<c<p<<k  (49)
, k<<p.

g\p)~

()~ 25 N
2p

All the integrals arising after substituting (49) into (47) can be calculated an-

alytically. The integrals of the form [ sin(pr)dp are calculated with the use

cos(a'r). (50)

of the regularization
: o —ep s _
'/a sin(pr)dp = 11_{% (/a e sm(p'r)dp) =
It is well known that the gravitational potential is expressed through the ggo-
component of the metric as goo = —1 — 2V [17]. Since ggo = —1 + Khgg, we
get
K
Thus, using equations (43), (47) and (49), we get
M 4 cos(kr) 4 , ,
V & _TGI (1 t g T 320 [sin(kr) — sz(k:r)]) : (52)
where G = 1_5—_16%3 and
b -
t
si(b) = / ST gt
o ¢

Thus, we have examined the case of the mass and the observer being located
on brane 1. But there are three more possible cases to be examined. It is the
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case of "shadow" matter, when the mass is located on brane 2 and the observer
is located on brane 1, the case of the mass and the observer being located on
brane 2, and the case of the mass being located on brane 1, whereas the observer
being located on brane 2 ("shadow" matter effect as well). All the calculations
in these cases are the same, as described above. But if the observer is located
on brane 2, it is necessary to pass to Galilean coordinates on brane 2 to get a
correct result. This problem was discussed in detail in paper [6]. The energy-
momentum tensor ¢, takes the form tog = Md(Z), tor = tij = 0 in the Galilean
coordinates on the brane the mass is located on. In the formulas presented below
(in the Galilean coordinates on the observer’s brane) the energy-momentum
tensor always has this canonical form, and passing to the Galilean coordinates
is taken into account by a factor in front of the brackets.

Now let us discuss, how to pass to Galilean coordinates on brane 2 by the
example of the case when the mass is located on brane 1 and the observer is
located on brane 2 ("shadow" matter effect). We consider the following form
of the Fourier transform with the integrand appropriate for this case

— 1 g KoV
A (0, T) = WBW / e ()6 (po)d'p, (53)

with B, being a constant. One can easily find, that in Galilean coordinates on
brane 2 this expression looks like

> 1 — M a" 2" (=
Ae0:2) = i ™ / et g(e M )o(qo)d'e,  (54)

where {z#} are Galilean coordinates on brane 2. In particular, this means, that
the intervals, in which we have to estimate the integrand, change. Now we have
to choose the following domains of estimate: ¢ << k, k << ¢ << e*®k and
eFlik << gq.

Another difficulty, which arises in this case, is that one of the integrals
cannot be evaluated analytically. It has the following form

/ e~k /gsin(qr) dg = k3/2/ Visin(tkr)e™ dt, (55)
k 1

where r = v Z2. But we can estimate it in the limiting cases 1 << kr and
kr << 1.
1) 1 << kr. In this case (55) can be estimated by integration by parts

o k
/1 Visin(tkr)e ™ dt ~ e_lw. (56)
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2) kr << 1. In this case we can make the expansion of sin(tkr) for the
small argument

/ Visin(tkr)e™ dt ~ / Vitsin(thr)e™ dt — (57)
1 0

_ /01 Vi (krt _ (krg?’ts + > e dt.

The first integral was taken from the table of integrals [18] and the second one
was calculated numerically. The result reads as follows

/1 Vi sin(tkr)e™t dt ~ ( vV —0. 2) kr + 0.099- (kr) (58)

And the last very interesting point of "shadow" matter cases is passing to
the de Donder gauge. Let us show it in the case of the field hy,| y=FR- It does
not satisfy the de Donder gauge condition on brane 2 (see (38)), analogously
to the case of matter located on brane 1. With the help of the gauge functions
of the following form

62kR kRe 2kR 8
GM = Wﬁugb + = 2 ¢ (59)

we can pass to the de Donder gauge. But after thls transformation hu,,|y:R
appears to have the following form

hW|y:R = U'u,,|y:R. (60)
This means, that Ay, | y=R satisfies transverse-traceless gauge conditon
8th|y=R =0, (61)

which is quite natural, because there is no matter on brane 2.
Thus, the Newtonian limit in this case has the following form

1)1 << kr
4 . _gM \/5 _ycos(kr)
~—o malll (NI s S Wil 2
Vv 3Gle . < +ty/ ¢ . : (62)
2) kr <<'1

V& —Gle—“‘fj\/_fkgé (1 + —— —0. 2\[+ 0. 099\[ kr) ) ~  (63)
T

—G e "MKk (2.05 4 0.02(kr)?) .
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Below the results for the last two cases are presented. All calculations were
made similarly to the presented above.
I) The mass and the observer are located on brane 2:

M 82kt 2e2* Tcos(kr)  sin(kr)
NGy [1— R 2 4
%4 G . < e+ — si(kr) + 3 [ o T ()2 ]) , (64)

where Gy = 62&% is the effective gravitational constant on brane 2.
IT) The mass is located on brane 2 and the observer is located on brane 1
("shadow" matter also):

1) et << kr

4 M 2 kre FE
V _gekRGZT (1 n \/;ekRe_l(iOS( ]:;3 )) 7 (65)

2) kr << etft

V & —G2Mk§ (1 0. 2\/7+o 0996_2kR\/; (kr) ) ~ (66)

~ —GaMk (2.05+ 0 02e 2B (kr)?

We would like to note that in all formulas for the Newtonian limit, presented
above, parameter M denotes the physical mass in Galilean coordinates on the
brane the mass is located on.

In paper |6] possible values of parameter k& were discussed. It was shown
that the value £k ~ 1Tev is the only one admissible for a correct physical
interpretation of the theory on brane 2. This means, that for r ~ lem the
value kr ~ 107 and the terms proportional to sin(kr) and cos(kr) can be
dropped as negligible. For example, since si(t — 0o) —+ 7, equation (64) takes
the form

M 1
VA —GQT (1 + 3e2kR> (67)

The same arguments can be applied to other cases of matter and observer
disposition. Since the contribution of massive modes are negligible for r >>
10~¢em, only the zero modes constitute the Newtonian limit. Unfortunately,
in formulas (52), (62), (64) and (65) the contributions of the massless graviton
and of the radion are "mixed". This problem can be solved with the help of the
zero mode approximation.
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3 ZERO MODE APPROXIMATION

Let us consider equations (12), (13) and (13) with the energy-momentum tensor
of the form T},, = ¢,,(x)d(y) (in the unitary gauge). As described above, with
the help of (17) these equation (except for the ur-equation) take the form (18),
(19) and (20). Then we can get equations (21) and (22) as it was made above. It
is well known that the field u,, in the presence of matter is a combination of zero
and massive modes [7], whose eigenfunctions are orthogonal [6]. In particular,
the zero mode can be represented as u),, = e*’a,,, where oy, depends on z
only. It also means that with the help of the residual gauge transformations

= e%%¢,(z) it is possible to impose the gauge condition
7 7 )

o ull, = 0, (68)

mu __
’U,N =V,

on the massive modes uj;, and the de Donder gauge condition on the zero mode

1
0" (aw, — in,“,oz) = 0. (69)

After imposing this gauge, we are still left with residual gauge transformation
(26). It follows from equations (19), (21),(68), (25) that

l%C@ZkR

R
Now let us consider equation (12). Making substitution (17) with condition
(21) and passing to the gauge (68), (69) we get
1 1

1 1
—O(ap — inuya) + 56_2”Du:ﬁ, + 534(9411:7” — 2k2uZL — (9484au/’fy = (71)

K kke2kE 0,0, K (0,0,
= —§t,ﬂ/5(y) + 6(e2FE — 1) ( 0 "IW> t— 6 (ﬁ - 77/W> to(y).

Since we are going to calculate the Newtonian limit and light deflection in the
zero mode approximation, we have to find an equation for the field o,. If we
multiply equation (71) by €?’, integrate it over y and take into account the
orthonormality condition for the wave functions of the modes, we get
1 Kk
O — 5%1/0‘) = _mtuv- (72)

o =

(70)

[\
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The equation for massive modes takes the form

1 1 R
Se 0, + oD, — 2K, — Do, = —t8(y) + (73)

2
N fke®*E - Rk (9,0, B (00 '5(y)
2e*E—1) " T ge*E—_1)\ O )" T\ g )0k

We note that equation (71) has been solved exactly in Section 2. But it
turned out to be impossible to evaluate analytically all the arising integrals

even for a simple form of ¢, (for example, for a static point mass).

When matter is on brane 2 (at y = R), all the reasonings are the same, as
presented above. The substitution has the form (38). The gauge conditions are
the same as in case of matter on brane 1 too. The equations of motion for the
fields o, ¢ in the presence of matter on brane 2 can be derived analogously
and read

%D(aw — %n,wa) + %e_%ljuz”y + %848411;% — 2w, — 04040ul, =(74)
= ~Studly —F) + 6(62’55— ) (8§V B 77“”) -
- (%) s - )
O — %nuva) = _%tuw (75)
6 = %tﬁ. (76)

We would like to note once again that these equations are written in the coor-
dinates {«*}, which are Galilean on brane 1 and are inappropriate for studying
physical effects on brane 2.

Now we are ready to find the Newtonian limit and light deflection by a
point-like static mass. Let us first make it for brane 1. The substitution (17) in
the zero mode approximation is

) kR R 1

0 _ 20
hl“/ =€ Oy — e2kR—_1nwj¢ + ﬁﬁua,,qb + 42 8u8,,(/). (77)

The equation for h,, on brane 1 in the zero mode approximation looks like
~1. 2kR
0 kke 1
Uhy, = ~ SRR (tuv — §nu,,tf;> — (78)
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kk K 1
_mnuyt + % (kR + 5) 8uayt.

Let us consider a static point mass with energy-momentum tensor tyy =
M6(Z), tor, = tij = 0, M denoting the inertial mass again. Then we can find a
solution of equation (78) for hgp-component

RE(F + 5 M

oo = 8m(e?f —1) r’ (79)
where r = v/Z2. Thus, we get
A (e%R + %) M 1 g\ M

Now let us show that the Randall-Sundrum model in the zero mode approx-
imation is equivalent to the linearized Brans-Dicke theory (apparently, it was
first noted in |7]). Appropriate formulas for the light deflection in the Brans-
Dicke theory are well known and can be found, for example, in [17].

The equation for the fluctuations of metric in the linearized Brans-Dicke
theory looks like

1 1 0,0,
L] (hl“/ — 5771“/]1) = —167G (tuy — m (771“/ — E ) t) X (81)

where w is the BD-parameter. It is easy to see that h,, satisfies the de Donder
gauge condition 0¥ (huu — %nuyh) = 0. The light deflection angle is given by [17]

o AMG (2043
L % +4)°

- £
with ryp being the impact parameter and M being the mass of the static point-
like source.

Now let us examine the four-dimensional effective theory on brane 1. It is
easy to see that h?w (77) does not satisfy the de Donder gauge condition. We
can impose it with the help of the gauge functions (42).

In this gauge equation (78) takes the form

1 €—2kR aay
0 (e bnan) = 1006 (- T (- B2V
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Here and in what follows we drop the superscript 0 of the zero mode approx-
imation. By comparing (83) with (81), we get w = 3 (e2*# — 1). Substituting
this into (82), we find the angle of light deflection by a static point-like source

on brane 1 A .
Ap ~ 1 R4
v 70 (1 + %C_ZkR> (84)

The second term in the denominator of formula (84) and the second term in
formula (80) correspond to the contribution of the radion. One can see that the
contribution of the radion is e?*# times smaller than the contribution of the
massless graviton.
Direct calculations lead us to the following results for the remaining cases.
All the reasonings concerning Galilean coordinates are the same as in section 2.
1) We live on brane 1, the mass is located on brane 2 ("shadow" matter)

1 1 0,0,
o t) o (- (%)) o

The light deflection angle is
- 3MG16_kR

ro

Ap

1\ 1
— 4MGie *E ( 1) — (86)
1+ 3/ 70

Newton’s Law looks like

4 M 1 M
V= ——Gle_kR— =— |1+ Gle_kR—
3 r 3

r

(87)

The second term in the denominator of formula (86) and the second term in the
brackets in formula (87) correspond to the contribution of the radion. One can
see that the contribution of the radion is of the same order, as the contribution
of the massless graviton, but the effect of the "shadow" matter is e*® times
smaller, than the effect of the ordinary matter (compare with (84) and (80)).
It means that the effective theory on brane 1 is phenomenologically acceptable,
but not interesting (see [6]).
2) We live on brane 2, and the mass is located on the same brane

1 g2kl 0,0,
I:l (h'uy — 57’]/“/]7/) = —167TG2 (tul/ — T (nlﬂ/ — E ) t) (88)

with G2 = Gk@kl&%
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The light deflection angle is

4M Gy 1
Ay ~ 89
N (1 n em> (89)
Newton’s Law looks like
2kR M

The second term in the denominator of formula (89) and the second term in
the brackets in formula (90) correspond to the contribution of the radion. Now
the contribution of the radion is e?*# times stronger than the contribution
of the massless graviton. It means that, in the case of the massless radion,
scalar gravity is realized on brane 2. However, if one assumes some mechanism
for generating the radion mass, for example, the Goldberger-Wise mechanism
[19], gravity in the zero mode approximation becomes tensor and the hierarchy
problem solves.

3) We live on brane 2, the mass is located on brane 1 ("shadow" matter

also)
1 1 )
D (huy — §nul/h> = —].67TG2€kR (t'uy — g (’l]wj — %) t) (9].)

The light deflection angle is

AM GoeFE 1 3MGe FE
N e (92)
To 1+3 To
Newton’s Law looks like
M 4 M
V=- ( ) GoeP— = ——Gre Fi— (93)
r 3 r

As before, the second term in the denominator of formula (92) and the sec-
ond term in the brackets in formula (93) correspond to the contribution of the
radion. We can see that the contribution of the radion is of the same order,
as contribution of the massless graviton, but the contribution of the "shadow"
matter to the Newtonian limit is e*® times smaller, than the contribution of
the ordinary matter, because of the interaction with the massless radion (com-
pare with (90)). But if the radion is massive (otherwise we have scalar gravity
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in "our" world on brane 2), the contribution of the "shadow" matter to the
Newtonian limit is e*® times stronger, than the contribution of the ordinary
matter. It could lead to some observable effects, resulting from the distribution
of matter in the "mirror" world (brane 1).

One can shaw that equations (80), (87), (90) and (93) coincide with the
zero-mode parts of equations (52), (65), (64) and (62) respectively.

We would like to note that in paper |7] the effects of the "shadow" matter
were also considered. In this paper the deflection angles with the same impact
parameters and by the same Newtonian masses were compared (Newtonian
mass is the coefficient in front of the { term in Newton’s Law). We have com-
pared the effects of the "shadow" and the ordinary matter, as it was made in
[7], and we have got the following results: 44% instead of 25% in [7] for brane 1
and the difference of the order of e**# instead of 25% in [7] for brane 2. This
discrepancy appears because we use the Galilean coordinates on brane 2. In the
case of the massive radion there is no difference in the zero mode approximation
at all for both branes.
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