Результаты лаборатории тяжёлых частиц и резонансов

ОЭФВЭ

Конференция НИИЯФ МГУ по итогам 2023 года, 26.02.2024

Результаты в коллаборации ATLAS

- Ј/ѱЈ/ѱ и Ј/ѱ+ѱ(2S) резонансы, PRL 131 (2023) 151902 🛛 🦛 слайды
- $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ эффективное время жизни, JHEP 09 (2023) 199
- активная работа над несколькими статьями (последними в ATLAS)

Детекторный и софтверный вклад в NA64

- Поиск легкой темной материи, PRL 131 (2023) 161801

Первые шаги в SPD @ NICA

- тестирование возможностей изучения пентакварков

На перспективу

- Подготовка к исследованиям на CEPC / SppC CEPC Technical Design Report – Accelerator, arXiv:2312.14363

Гладилин Л.К.

Event selection, reconstruction and definition of signal and control regions

PRL 131 (2023) 151902

 $m_{J/\psi}$ [GeV]

 $\begin{array}{l} \mbox{Feed-downs from $X \rightarrow J/\psi \ \psi(2S)$ to $m(J/\psi \ J/\psi)$} \\ \mbox{via $\psi(2S) \rightarrow J/\psi X$ and $\psi(2S) \rightarrow \gamma \ \chi_{cJ}$ with $\chi_{cJ} \rightarrow \gamma \ J/\psi$} \end{array}$

$$N_{\rm fd} = \frac{\mathcal{B}'\epsilon'}{\mathcal{B}\left(\psi(2S) \to \mu\mu\right)\epsilon} N$$

 $m(J/\psi J/\psi)$: Unbinned max. likelihood fits

Model A: 3 BW's

Model B: 2 BW's, 1st one interferes with SPS

$$f_{s}(x) = \left| \sum_{i=0}^{2} \frac{z_{i}}{m_{i}^{2} - x^{2} - im_{i}\Gamma_{i}(x)} \right|^{2} \sqrt{1 - \frac{4m_{J/\psi}^{2}}{x^{2}}} \otimes R(\theta) \qquad \qquad f(x) = \left(\left| \frac{z_{0}}{m_{0}^{2} - x^{2} - im_{0}\Gamma_{0}(x)} + Ae^{i\phi} \right|^{2} + \left| \frac{z_{2}}{m_{2}^{2} - x^{2} - im_{2}\Gamma_{2}(x)} \right|^{2} \right) \sqrt{1 - \frac{4m_{J/\psi}^{2}}{x^{2}}} \otimes R(\theta)$$

Models with 2 BW's with interference and 3 BW's w/o interference Excluded on 95% CL w.r.t. model A (with toy MC)

 $m(J/\psi \psi(2S))$: Unbinned max. likelihood fits

$$\mathcal{L} = \mathcal{L}_{SR}\left(\vec{\theta}, \vec{\lambda}\right) \cdot \mathcal{L}_{CR}\left(\vec{\theta}\right) \cdot \prod_{j=1}^{K} G\left(\theta_{j}'; \theta_{j}, \sigma_{j}\right)$$

Model α: 3 BW's (tails) + 1 BW

 $f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 + \left| \frac{z_3}{m_3^2 - x^2 - im_3 \Gamma_3(x)} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\theta)$

Significance for 4th resonance 3.0σ

Model β: single BW

Systematics:		X(6900)		X(7200)	
Systematics.	Systematic	di- J/ψ		J/ψ + ψ (2S)	
	Uncertainties (MeV)	m_2	Γ_2	m_3	Γ ₃
	Muon calibration	±6	±7	<1	± 1
	SPS model parameter	±7	±7	<	<1
	SPS di-charmonium $p_{\rm T}$	±7	± 8	<1	
	Background MC statistics	±7	± 8	±1	<1
	Mass resolution	±4	-3	-1	+2/-4
	Fit bias	-13	+10	+9/-10	+50/-16
	Non-closure		1	± 4	±6
	Transfer factor —		_	±5	±23
$ \longrightarrow $	Presence of 4th resonance	<1			
	Feed-down	+4/-1	+6/-2	-	
	Interference of 4th resonance		_	-32	-11
$ \longrightarrow $	P and D-wave BW	+9	+19	<1	± 1
	ΔR and muon $p_{\rm T}$ requirements	+3/-2	+6/-4	+1/-2	-2

di- J/ψ	model A	model B	
m_0	$6.41 \pm 0.08 ^{+0.08}_{-0.03}$	$6.65 \pm 0.02^{+0.03}_{-0.02}$	
Γ_0	$0.59 \pm 0.35 ^{+0.12}_{-0.20}$	$0.44 \pm 0.05 ^{+0.06}_{-0.05}$	
m_1	$6.63 \pm 0.05 ^{+0.08}_{-0.01}$		
Γ_1	$0.35 \pm 0.11^{+0.11}_{-0.04}$		
m_2	$6.86 \pm 0.03^{+0.01}_{-0.02}$	$6.91 \pm 0.01 \pm 0.01$	X(6900)
Γ_2	$0.11 \pm 0.05 \substack{+0.02 \\ -0.01}$	$0.15 \pm 0.03 \pm 0.01$	> 5 σ
$\Delta s/s$	$\pm 5.1\%^{+8.1\%}_{-8.9\%}$		
J/ψ + ψ (2S)	model α	model β	
m_3 or m	$7.22 \pm 0.03 \substack{+0.01 \\ -0.03}$	$6.96 \pm 0.05 \pm 0.03$	X(7200)
Γ_3 or Γ	$0.09 \pm 0.06^{+0.06}_{-0.03}$	$0.51 \pm 0.17^{+0.11}_{-0.10}$	3.0σ
$\Delta s/s$	$\pm 21\% \pm 14\%$	$\pm 20\% \pm 12\%$	

Di-charmonia tetraquarks (*cccc*)

di- J/y	b	model A		
m_0	6.4	$1 \pm 0.08^{+0.0}_{-0.0}$	8 3 Δ Τ	241
Γ_0	0.5	$9 \pm 0.35^{+0.1}_{-0.2}$	2	LAJ
m_1	6.6	$3 \pm 0.05^{+0.0}_{-0.0}$	8	
Γ_1	0.3	$5 \pm 0.11^{+0.1}_{-0.0}$	$\frac{1}{4} \frac{J/\psi}{\psi}$	+ψ(2S)
m_2	6.8	$36 \pm 0.03^{+0.0}_{-0.0}$	m_{2}^{1} m_{3}	or m
Γ_2	0.1	$1 \pm 0.05^{+0.0}_{-0.0}$	Γ_{1}^{2} Γ_{3}	or Γ
CMS		BW_1	BW ₂	BW ₃
No-interference	e <i>m</i> [MeV]	$6552\pm10\pm12$	$6927\pm9\pm4$	$7287^{+20}_{-18}\pm 5$
	Γ [MeV]	$124^{+32}_{-26}\pm 33$	$122^{+24}_{-21}\pm18$	$95^{+59}_{-40}\pm19$
	N	470^{+120}_{-110}	492^{+78}_{-73}	$156\substack{+64 \\ -51}$

X(6900) well seen by all 3 experiments

Signatures for a bump at 7.2-7.3 GeV In all 3 experiments

Nature of the low-mass bump to be further studied

Role of other feed-downs to be clarified, e.g., $T_{cc\bar{c}\bar{c}} \rightarrow \chi_{cJ}\chi_{cJ'} \rightarrow J/\psi J/\psi \gamma \gamma$

Sci.Bull. 65 (2020) 1983

Изучение пентакварков в SPD @ NICA ?

Brief pentaquarks' story, θ^+ :

 $\Theta(1540)^+$

Diakonov, Petrov, Polyakov (hep-ph/9703373, Z.Phys. A359, 305 (1997) Exotic Anti-Decuplet of Baryons: Prediction from Chiral Solitons

2003: seen in exotic decay $(\theta^+ \rightarrow K^+n)$ by LEPS, CLAS, SAPHIR non-exotic decay $(\theta^+ \rightarrow K^0{}_{S}p)$ seen by many exp's Unseen by many exp's including CLAS with increased statistics Current status of θ^+ : removed from PDG after 2006 reputation below plinth

Attempts to explain differences between exp's:

Dementiev R.K., Phys. Atom. Nucl. 76 (2015) 301 On the mechanism of O⁺-pentaquark production

phase-shift effects

Azimov, Goeke, Starkowsky , Phys.Rev.D76 (2007) 074013 An explanation why the Theta+ is seen in some experiments and not in others

short-term fluctuations of initial hadrons

"studies of the hadron remnants in hard processes"

at NICA?

Interesting options for NICA :

Triply charged pentaquarks: (uuuuđ) = $\Delta^{+++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) π^+ (uuuus) = $\Delta_s^{+++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) K⁺

Pentaquarks with hidden strangeness: $(uuus\overline{s}) = P_s^{++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \varphi (\rightarrow K^+K^-)$ $(uuds\overline{s}) = P_s^+ \rightarrow p \varphi (\rightarrow K^+K^-)$ $(udds\overline{s}) = P_s^0 \rightarrow \Lambda^0 (\rightarrow p \pi^-) K_s^0 (\rightarrow \pi^+\pi^-)$

Check for (ududs) = θ^+ : $\theta^+ \rightarrow K^0_{sp}$, $\theta^+ \rightarrow K^+n$ (?)

and with charm at NICA II :

Charmed pentaquarks: (uuuuc) = $\Delta_c^{++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) \overline{D}^0 ($\rightarrow K^+ \pi^-$) (uuudc) = $\Delta_c^+ \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) D⁻ ($\rightarrow K^+ \pi^-\pi^-$) Search for (ududc) = $\theta_c^{-0} \rightarrow \theta^+\pi^-$, pK⁰ π^- , D^{(*)-}p, ...

Pentaquarks with hidden charm (uuucc) = $P_c^{++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) J/ ψ ($\rightarrow \mu^+\mu^-$) (uudcc) = $P_c^+ \rightarrow p J/\psi$, Λ_c^+ ($\rightarrow K^- p \pi^+$) \overline{D}^0 ($\rightarrow K^+ \pi^-$) (uddcc) = $P_c^0 \rightarrow \Lambda_c^+$ ($\rightarrow K^- p \pi^+$) D⁻ ($\rightarrow K^+ \pi^-\pi^-$) Interesting options for NICA :

Triply charged pentaquarks: (uuuuđ) = $\Delta^{+++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) π^+ (uuuus) = $\Delta_s^{+++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) K⁺

Pentaquarks with hidden strangeness: $(uuus\overline{s}) = P_s^{++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \varphi (\rightarrow K^+K^-)$ $(uuds\overline{s}) = P_s^+ \rightarrow p \varphi (\rightarrow K^+K^-)$ $(udds\overline{s}) = P_s^0 \rightarrow \Lambda^0 (\rightarrow p \pi^-) K_s^0 (\rightarrow \pi^+\pi^-)$

Check for (ududs) = θ^+ : $\theta^+ \rightarrow K^0_{sp}$, $\theta^+ \rightarrow K^+n$ (?)

and with charm at NICA II :

Charmed pentaquarks: (uuuuc) = $\Delta_c^{++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) \overline{D}^0 ($\rightarrow K^+ \pi^-$) (uuudc) = $\Delta_c^+ \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) D⁻ ($\rightarrow K^+ \pi^-\pi^-$) Search for (ududc) = $\theta_c^{-0} \rightarrow \theta^+\pi^-$, pK⁰ π^- , D^{(*)-}p, ...

Pentaquarks with hidden charm (uuucc) = $P_c^{++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) J/ ψ ($\rightarrow \mu^+\mu^-$) (uudcc) = $P_c^{+} \rightarrow p J/\psi$, Λ_c^{+} ($\rightarrow K^- p \pi^+$) \overline{D}^0 ($\rightarrow K^+ \pi^-$) (uddcc) = $P_c^{0} \rightarrow \Lambda_c^{+}$ ($\rightarrow K^- p \pi^+$) D^- ($\rightarrow K^+ \pi^-\pi^-$)

Can we register (uuuuđ) = $\Delta^{+++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) π^+ with SPD?

Pythia 8.310, NNPDF40_lo_as_01180

pp at Vs = 4 GeV and 10 GeV, SoftQCD:inelastic = on

Simplified $\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$ model

Gerasyuta, Kochkin (hep-ph/0310225, Int .J. Mod. Phys. E 15 (2006) 71-86 Relativistic five-quark equations and u, d- pentaquark spectroscopy

Table II. Low-lying Δ - isobar pentaquark masses and contributions of subamplitudes $+ \mu$

BM, $D\overline{q}D$, Mqqq and $Dqq\overline{q}$ to pentaquark amplitude in percentage of probability (diquark

with	J^P	= 1	+).

∣ Fig. №	Meson J^{PC}	J^P	Mass, MeV	A_1	A_2	A_3	A_4
				(BM)	$(D\overline{q}D)$	(Mqqq)	$(Dqq\overline{q})$
4	0++	$\frac{1}{2}^+, \frac{3}{2}^+$	1485(1600)	31.60	6.42	33.93	28.05
4	1++	$\frac{1}{2}^+, \frac{3}{2}^+, \frac{5}{2}^+$	1550(1750)	28.08	8.88	42.09	20.95
4	2++	$\frac{1}{2}^+, \frac{3}{2}^+, \frac{5}{2}^+$	1736(1920)	24.53	13.25	44.07	18.15
5	2++	$\frac{7}{2}^{+}$	1950(1950)	24.99	-	75.01	-
5	0^+	$\frac{1}{2}^{-}$	1453(1620)	38.13	-	61.87	-
5	1	$\frac{1}{2}^{-}, \frac{3}{2}^{-}$	1920(1940)	25.97	-	74.03	-

Parameters of model: quark mass m = 410 MeV, cut-off parameter $\Lambda = 20,1$; gluon constant g = 0.417. Experimental mass values of Δ - isobar pentaquarks are given in parentheses [12].

(uuuuuu)

Can we register (uuuuđ) = $\Delta^{+++} \rightarrow \Delta^{++}$ ($\rightarrow p \pi^+$) π^+ with SPD?

Pythia 8.310, NNPDF40_lo_as_01180

pp at Vs = 4 GeV and 10 GeV, SoftQCD:inelastic = on

Simplified $\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$ model

m(Δ⁺⁺⁺) = 1450 MeV r(Δ⁺⁺⁺) = 150 MeV in comp. with r(Δ⁺⁺) ~ 117 MeV

produced in decays of heavy (~2 GeV) Δ -like states

$\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$ tracks' acceptances

For all 3 tracks	η _{track} < 2.5	η _{track} < 2.0	η _{track} < 1.5
	√s = 4 / 10 GeV	√s = 4 / 10 GeV	√s = 4 / 10 GeV
p _{T,track} > 100 MeV	54% / 51%	52% / 40%	45% / 25%
p _{T,track} > 150 MeV	22% / 25%	22% / 21%	21% / 14%
p _{T,track} > 200 MeV	6% / 9%	6% / 8%	6% / 5%

for further plots: $p_{T,track}$ > 150 MeV && $|\eta_{track}|$ < 2.5

 $\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$, background-subtracted mass distribution

 $\sigma(\Delta^{+++})/\sigma(\Delta^{++}) = 10\%$

such large fraction looks like measurable careful background study is needed for 1% measurement or upper limit it can be a few overlapping Δ^{+++} states Результаты и планы

лаборатории тяжёлых частиц и резонансов

Результаты в коллаборации ATLAS

- J/ψJ/ψ и J/ψ+ψ(2S) резонансы, PRL 131 (2023) 151902
- $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ время жизни, JHEP 09 (2023) 199
- активная работа над несколькими статьями (последними в ATLAS)

Детекторный и софтверный вклад в NA64

- Поиск легкой темной материи, PRL 131 (2023) 161801

Первые шаги в SPD @ NICA

- тестирование возможностей изучения пентакварков

На перспективу

- Подготовка к исследованиям на CEPC / SppC CEPC Technical Design Report – Accelerator, arXiv:2312.14363

Back-up Slides

m(J/ψ J/ψ)

m(J/ψ ψ(2S))

ΔR > 0.25

ΔR < 0.25

Brief pentaquarks' story, Θ_{c}^{0} : $\Theta_{c}^{0} = (ud)^{2} \overline{c}$ Jaffe-Wilczek (hep-ph/0307341): m(Θ_{c}^{0}) = 2710 MeV Karliner-Lipkin (hep-ph/0307343): m(Θ_{c}^{0}) = 2985±50 MeV $\Gamma(\Theta_{c}^{0}) \sim 21$ MeV

2004: seen in the decay $(\theta_c^0 \rightarrow D^{*-}p)$ with m (Θ_c^0) = 3099 MeV by only H1 @ HERA Unseen by many exp's including ZEUS @ HERA and H1 with increased statistics

Can be searched again in various decays: $\theta_c^0 \rightarrow \theta^+ \pi^-$, pK⁰ π^- , D^{(*)-}p, ...

at NICA?

Brief pentaquarks' story, pentaquarks with hidden charm :

Partially confirmed by D0, ATLAS

Not seen by GLueX \rightarrow limits on branchings of decays to (J/ ψ p)

Current status in PDG 2023:

$$\left(440
ight) ^{+}$$
 $P_{c}(4457)$

 $P_c(4380)^+$

Strange pentaquarks candidates are not yet in PDG

Most popular description – molecular states

Many phenomenological papers on pentaquarks with hidden charm, beauty and strangeness

at NICA?

$\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$ kinematics

$\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$, proton identification?

proton is typically fastest track can be used in case of no PID

$\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$, reconstructed mass

combine proton with two positively charged pions require (1.14 < m(p π_1^+) < 1.32) || (1.14 < m(p π_2^+) < 1.32) (~97% eff.)

data-driven background shape estimation is needed

$\Delta^{+++} \rightarrow \Delta^{++} (\rightarrow p \pi^+) \pi^+$, background shape

 $p/\pi_1/\pi_2$ from another event

p from another event

CEPC Technical Design Report – Accelerator, arXiv:2312.14363

- The CEPC aims to start operation in 2030's, as a Higgs (Z / W) factory in China.
- □ To run at $\sqrt{s} \sim 240$ GeV, above the ZH production threshold for ≥1 M Higgs; at the Z pole for ~Tera Z; at the W⁺W⁻ pair and then *tt* pair production thresholds.
- Higgs, EW, flavor physics & QCD, probes of physics BSM.
- **D** Possible *pp* collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the far future.

	Higgs	Z	W	tī
Number of IPs 2				
Circumference (km)	100.0			
SR power per beam (MW)	30			
Energy (GeV)	120	45.5	80	180
Bunch number	268	11934	1297	35
Emittance $\varepsilon_x / \varepsilon_y$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7
Beam size at IP σ_x / σ_y (um/nm)	14/36	<mark>6/3</mark> 5	13/42	39/113
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9
Beam-beam parameters <i>ξ_x /ξ_y</i>	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1
RF frequency (MHz)	650			
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	s ⁻¹) 5.0 115 16 0.5			

