Конференция НИИЯФ МГУ

Физика нейтрино в ОЭПВАЯ фундаментальные и прикладные исследования

<u>Чепурнов А.С.,</u> Широков Е.В., Громов М.Б., Николаев А.С. + аспиранты и студенты физического факультета МГУ

26.02.2024

Космические лучи - ~>100 МэВ поток 10⁶ см⁻²*с⁻¹

ΗΟΒΟΕ ΗΑΠΡΑΒΛΕΗΜΕ

Исследование солнечных и земных (гео)нейтрино

Эксперимент Borexino Регистрация и исследование реакторных антинейтрино

Эксперименты iDREAM, TAO (JUNO)

Регистрации частиц тёмной материи/солнечных нейтрино

Эксперименты DarkSide-50, DarkSide-20k, DarkSide-LowMass TeV-PeV нейтринный телескоп

Эксперимент Baikal- GVD Сцинтилляционный/черенковский метод регистрации частиц через процесс рассеяния и/или специальные реакции

Состав и особенности используемой экспериментальной методики:

- стратегия и тактика проведения долгосрочных низкофоновых экспериментов в подземных низкофоновых лабораториях
- о низкий порог регистрации событий по энергии при широком диапазоне регистрируемых энергий
- о исследование имеющихся и разработка новых низкофоновых материалов
- о специальные методики скрининга материалов (измерения уровней остаточной радиоактивности)
- о новые сцинтилляторы
- о новые принципы и приборы для регистрации слабых фотонных сигналов
- разработка электроники и ПО с учетом требований высокой надежности низких шумов и высокого быстродействия

Моделирование

- <u>Geant4</u> создание моделей отдельных подсистем детекторов и моделей детекторов в целом
- NeuCBOT, SaG4n, TALYS and etc расчёт и/или моделирование ядерных реакций для оценки фоновых условий

Анализ и обработка экспериментальных данных

Исследование солнечных и земных нейтрино в эксперименте Borexino (Италия)

Детектор Borexino завершил свою работу 7 октября 2021 года, проработав 14.5 лет Сцинтиллятор слит, ведётся демонтаж некоторых частей детектора

Ведётся анализ данных, который продлится ещё около 2 лет

Основные цели на 2022-2023 гг.	Публикации
Итоговые результаты по измерению потока CNO-нейтрино с учётом и без ограничения на ²¹⁰ Ві	Phys. Rev. Lett. 129, 252701 (2022) Phys. Rev. D 108, 102005 (2023)
 Совместный анализ данных всех фаз измерений (2007-2021) Итоговые значения измеренных потоков pp- и ⁷Ве-нейтрино, рекордная точность для потока pp-нейтрино (было 11%, станет 8%) Новый рекордный предел на эффективный магнитный момент нейтрино Новый рекордный предел на время жизни электрона по отношению к гипотетическому распаду на нейтрино и моноэнергетический фотон 	Планируются в 2024 и 2025 гг.
Определение направления прихода нейтринного излучения в сцинтилляционном детекторе	Phys. Rev. Lett. 128 (2022) 9, 091803 Phys. Rev. D 105 (2022) 5, 052002
Сезонные вариации потока солнечных нейтрино и определение параметров орбиты Земли	Astroparticle Physics 145, 102778 (2023)

Итоговые результаты эксперимента Borexino по исследованию солнечных CNO-нейтрино

Анализ: Многопараметрическая подгонка энергетического спектра и пространственного распределения событий в третьей фазе измерений с применением ограничения на направление прилёта солнечных нейтрино методом CID

	Phys. Rev. Lett. 129 , 252701 (<mark>2022</mark>)	Phys. Rev. D 108, 102005 (2023)
Поток CNO-v, v / (см² * с)	$6.6^{+2.0}_{-0.9} \times 10^8$	$6.7^{+1.2}_{-0.8} \times 10^8$
Ошибка, %	22	15

Измерение потока CNO-нейтрино с помощью детектора Borexino и влияние результатов на Стандартную модель Солнца (СМС)

Регистрация и исследование реакторных антинейтрино

Эксперимент iDREAM

Демонстрационный эксперимент по контролю работы ядерных реакторов с помощью нейтринных детекторов

- о Детектор перевезён и установлен на КАЭС
- Измерения проведены с включённым и выключенным реактором
- о Выполняется анализ данных
- о Планируется модернизация детектора

- Мишень (TG) 1м³ 1г/л Gd-ЛАБ ЖОС
- Гамма-кетчер (GC) 1.8м³ ЛАБ ЖОС
- Буфер (Buffer) 0.5 m³ ЛАБ
- 16 + 12 ФЭУ R5912
- Мюонное вето из ПОС
- Пассивная защита из ПЭ(Br)

3 ГВт ВВЭР реактор (3 энергоблок Калининской АЭС)

о Опубликованы статьи: JINST **17** P09001 (2022), Phys. Part. Nuclei **54**, 468–473 (2023), Phys. Atom. Nuclei **86**, 1389–1393 (2023)

Регистрация антинейтрино в детекторе iDREAM

Fig. 4. Fission fraction evolution within the reactor campaign: $1-^{235}$ U, $2-^{239}$ Pu, $3-^{238}$ U, $4-^{241}$ Pu. Shaded bands indicate the time periods covered by iDREAM data.

Abramov, A., Alyev, R., Chepurnov, A. et al. Antineutrino Signal in the iDREAM Detector at Kalinin NPP. Phys. Atom. Nuclei **86**, 1389–1393 (2023). https://doi.org/10.1134/S1063778824010022

Детектор ТАО (эксперимент JUNO, Китай)

Обеспечение эксперимента JUNO опорным экспериментальным (модельно независимым) спектром реакторных антинейтрино

Группа из НИИЯФ МГУ отвечает за светодиодную калибровочную систему (оборудование, ПО, моделирование, анализ данных).

2023: тестирование системы на прототипе детектора

Работы по сборке 1:1 прототипа детектора ТАО и установке системы светодиодной калибровки в феврале, июле и ноябре 2023 года в IHEP (Пекин)

Поиск частиц тёмной материи в эксперименте DarkSide (Италия)

Цель: прямая регистрация частиц тёмной материи

Метод: наблюдение рассеяния частиц тёмной материи на ядрах и электронах мишени в двухфазной аргоновой время-проекционной камере (LAr-TPC)

Финальная версия конструкции

Вклад группы из НИИЯФ МГУ (2022-2023 гг.):

- Расчёт фона от (α, n) реакций, протекающих в материалах детектора из-за наличия урана и тория; разработка ПО для расчётов (NeuCBOT); анализ доступности и качества данных по (α, n) реакциям (Ядерная физика, 2023, Т. 86, № 2, стр. 353-360, ещё одна публикация готовится)
- 2) Поиск лёгких частиц тёмной материи с массами около 1 ГэВ/с² путём учёта атомных эффектов (эффект Мигдала и тормозное излучение) при ожидаемом рассеянии частиц тёмной материи на ядрах мишени. Используются данные DarkSide-50. (*Phys. Rev. Lett.* **130**, 101001 (2023))

3) Разработка компактного генератора нейтронов для калибровки детектора

4) Создание технологии получения ультранизкофонового титана в промышленных масштабах в России с целью изготовления из него элементов низкофоновых детекторов, в частности, криостата установки DarkSide-LowMass

TeV-PeV нейтринный телескоп Baikal-GVD

Состав группы (февраль 2024 г):

- Чепурнов А.С., Широков Е.В., Громов М.Б., Николаев А.С., Брусницын А.А.
- 2 аспиранта 3 года физфака,
- 4 студента специалитета
- 2 студент магистратуры
- 1 магистрант Бакинского филиала МГУ

при тесном сотрудничестве с НТЦП НИИЯФ

Работы ведутся в тесной кооперации с коллегами из следующих организаций :

- Объединённый институт ядерных исследований Borexino, DarkSide, Baikal-GVD
- Институт ядерных исследований РАН Baikal-GVD
- Национальный исследовательский центр «Курчатовский институт» Borexino, DarkSide, iDREAM
- Российский химико-технологический университет имени Д. И. Менделеева DarkSide
- Белгородский государственный национальный исследовательский университет DarkSide

Спасибо за внимание!