

НИИ Ядерной Физики имени Д.В. Скобельцына

Б.И. ГОРЯЧЕВ

СТАТИСТИЧЕСКИЙ АНАЛИЗ НЕЙТРИННЫХ СОБЫТИЙ ОТ ВСПЫШКИ *SN1987A* В ЧЕРЕНКОВСКИХ ДЕТЕКТОРАХ: ОЦЕНКА МАССЫ ЭЛЕКТРОННОГО АНТИНЕЙТРИНО

Препринт НИИЯФ МГУ 2005/786

Московский Государственный Университет имени М.В. Ломоносова

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. ЛОМОНОСОВА

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Д.В. СКОБЕЛЬЦЫНА

Б.И. ГОРЯЧЕВ

СТАТИСТИЧЕСКИЙ АНАЛИЗ НЕЙТРИННЫХ СОБЫТИЙ ОТ ВСПЫШКИ *SN1987A* В ЧЕРЕНКОВСКИХ ДЕТЕКТОРАХ: ОЦЕНКА МАССЫ ЭЛЕКТРОННОГО АНТИНЕЙТРИНО

Препринт НИИЯФ МГУ 2005/786

B.I. Goryachev e-mail: <u>big@srdlan.npi.msu.su</u> Statistic analysis of neutrino events from the burst *SN1987A* in Cherenkov detectors: evaluation of the electron antineutrino mass.

Preprint INPH MSU 2005/786 Abstract

The method of the statistic sample moments was used for analysis of the neutrino events from the burst *SN1987A* in Cherenkov detectors. Comparison of the analysis results with the predictions of the current model of stellar-core collapse allows to evaluate the electron antineutrino mass as $20\pm9 \ eV/c^2$.

Горячев Б.И.

Статистический анализ нейтринных событий от вспышки SN1987A в черенковских детекторах: оценка массы электронного антинейтрино

Препринт НИИЯФ МГУ 2005/786 Аннотация

Для анализа нейтринных событий от вспышки *SN1987A* в черенковских детекторах использован метод выборочных статистических моментов. Сравнение результатов анализа с предсказаниями современной модели коллапса звёздных коров позволяет оценить массу электронного антинейтрино как 20 ± 9 э B/c^2 .

© Горячев Б.И., 2005 © НИИЯФ МГУ, 2005

Наблюдение нейтринной вспышки от сверхновой *SN1987A* дало ценную информацию по астрофизике звездных коллапсов и физике нейтрино. Эта информация в значительной мере была получена с помощью черенковских водных детекторов *Kamiokande II (KII)* [1] и *Irvine-Michigan-Brookhaven (IMB)* [2] коллаборациями.

За два десятилетия до вспышки Г.Т. Зацепин [3] указал на возможность оценки массы регистрируемых детекторами нейтрино, принимая во внимание, что расстояние d от источника до детектора массивное нейтрино с энергией покоя E_0 и полной энергией E пролетает за время

$$t_{sd} = \frac{d}{c} \left(1 + \frac{1}{2} E_0^2 / E^2 \right), \tag{1}$$

где c – скорость света. Начиная с 1987 года оценке E_0 было посвящено большое число работ, в которых, как правило, сравнивались параметры отдельных нейтринных событий – E и время регистрации нейтрино t_d . Такой анализ связан с большой неопределенностью, возникающей из-за конечной длительности нейтринной вспышки.

Сформировалось мнение, что результаты наблюдений согласуются с нулевой массой нейтрино или позволяют оценить только её верхнюю границу. Причины такого неоправданного скептицизма обсуждаются в приложении.

В настоящем сообщении оценивается масса электронного антинейтрино \overline{V}_e путем сравнения низших эмпирических выборочных центральных моментов функции распределения F(E,t) источника и аналогичных моментов этой функции, предсказываемых современной теоретической моделью [4]. Эмпирические моменты F(E,t) зависят от предполагаемой величины E_0 поскольку $t_d=t+t_{sd}$, где t – момент испускания \overline{V}_e в источнике. Энергия E нейтрино при его движении от источника до детектора, как обычно, считается неизменной.

Функция распределения на расстоянии d от источника

$$F_{d}(t_{d}, E) = \int_{0}^{\infty} \delta(t_{d} - t - t_{sd}) F(t, E) dt, \qquad (2)$$

где нулевой отсчет времени t соответствует началу испускания \overline{V}_e . Рассматривая конкретный детектор, удобно нормировать F(t,E) в (2) к единице в области $0 < t < \infty$ и $E_c \le E < \infty$. Здесь E_c означает энергетический порог регистрации \overline{V}_e в данном детекторе.

Чтобы выборочные эмпирические моменты F(E,t) можно было сравнивать с теоретическими, все эмпирические моменты вычислялись с весовыми коэффициентами a.

Для *i*-го события в выборке из *n* событий

$$a_{i} = E_{i}^{-2} f_{i}^{-1} (E_{+}) (n^{-1} \sum_{i=1}^{n} E_{i}^{-2} \cdot f_{i}^{-1} (E_{+}))^{-1}.$$
 (3)

Такая структура a_i соответствует процессу обратного β - распада

$$\overline{\nu}_e + p = n + e^+, \qquad (4)$$

который, как считается, ответственен за регистрацию \overline{V}_e в черенковских детекторах. Действительно, процесс (4) в 15-20 раз вероятнее конкурирующего процесса рассеяния нейтрино (всех типов) на электронах. Кроме того, именно (4) позволяет согласовать энергию нейтрино и количество событий, наблюдавшихся в [1,2], с предсказаниями теоретических моделей коллапсов звёздных коров.

Формула (3) учитывает квадратичный рост сечения захвата (4) с энергией E и вероятность регистрации $f(E_+)$ позитрона энергии E_+ в детекторе (в расчетах были использованы данные *KII* и *IMB* коллабораций, приведенные в [5]).

Связь между Е и Е₊ обычно выражают формулой

$$E = E_+ + 1.3 \text{ M} \mathfrak{B} \tag{5}$$

В настоящей работе использовалось более точное соотношение [6], учитывающее небольшую поправку на энергию отдачи нейтрона. Однако в случае $E_+>E_c$ выражение (5) достаточно точно и для процесса (4) нет необходимости привлекать информацию об угловом распределении позитронных треков в детекторах.

Если рассматривать упругое рассеяние нейтрино на электронах, такую (весьма неточную) информацию использовать необходимо.

Расстояние до *SN1987A*, вероятно, составляет 55 \pm 15 Крс [6]. Чтобы получить консервативную оценку, минимизирующую величину E_0 , было выбрано значение d=70 Крс.

При проведении статистического анализа нейтринных событий важно, чтобы все они вызывались захватом \overline{V}_e (4). Согласно оценкам авторов [1, 2] темп счета фоновых импульсов за 10 сек составлял ~0.2 (*KII*) и ~0.8 (*IMB*). В *IMB* одно событие было изъято авторами как фоновое. Все оставшиеся 8 событий рассматривались в нашем анализе. Из одиннадцати событий, представленных *KII*, событие №3 имеет величину $E_+=7.5\pm2.0$ МэВ, что по существу совпадает с энергетическим порогом детектора *KII*. Это событие с

большой вероятностью может рассматриваться в качестве фонового и не учитывалось в расчётах. Таким образом, в качестве исходных данных имелись две статистические выборки событий (E, t_d) , одна объемом n=10 (*KII*), а другая – n=8 (*IMB*). Каждая выборка имеет в качестве генеральной совокупности свою функцию $F(E,t;E_c)$, поскольку величины E_c для рассматриваемых детекторов существенно различаются.

Для каждого из предполагаемых значений E_0 согласно (1) по данным для рассматриваемого детектора величинам t_d находились значения t_i , что давало выборку из *n* событий (E_i, t_i) , характеризующую функцию распределения $F(E,t;E_c)$ источника. Рассчитывались выборочная дисперсия D(t) и коэффициенты корреляции Q(E,t) и $Q(E^{-2},t)$. Полученные зависимости этих величин от E_0 представлены на рис. 1 и 2. Заметим, что указанные выборочные моменты инвариантны по отношению к временному сдвигу. Это существенно для решаемой здесь задачи и даёт возможность сравнивать результаты, полученные на детекторах несинхронизированных во времени.

Подчеркнем, что обсуждаемые функции не зависят от астрофизической модели (за исключением предположения о реализации процесса захвата (4)).

Как видно из рисунков, кривые D(t) имеют минимум.

Можно ли положение минимума по шкале E_0 связать с искомым значением массы \overline{V}_e ?

Рассмотрим связь между D(t) с одной стороны и $Q(E^{-2},t)$, Q(E,t) – с другой.

Базируясь на (2), можно показать, что

$$D(t) = D(t_d) - \frac{1}{4}d^2c^{-2} \cdot D(E^{-2})E_0^4 -$$

$$-dc^{-1} \cdot Q(E^{-2},t) \cdot S(E^{-2}) \cdot S(t) \cdot E_0^2$$
(6)

где S(t) и $S(E^{-2})$ средние квадратичные отклонения величин t и E^{-2} .

Первое слагаемое в (6) есть дисперсия наблюдаемых значений t_d (она совпадает с D(t) при $E_0=0$), второе – пропорционально дисперсии величин E^{-2} , в третьем слагаемом $Q(E^{-2},t)$ есть коэффициент корреляции переменных t и E^{-2} .

Если в (6) используются выборочные значения статистических моментов, формула (6) дает точно те же величины D(t), что и изложенный выше прямой метод.

Выражение (6) позволяет понять ход кривой D(t) в зависимости от E_0 . При малых значениях E_0 два последних слагаемых отрицательны $(Q(E^{-2},t)>0)$. С ростом E_0 последнее слагаемое становится положительным, так как начинает выполняться неравенство $Q(E^{-2},t)<0$. Вычисления

показывают, что минимум в рассматриваемой кривой точно соответствует значению E_0 , где $Q(E^{-2},t)$ меняет знак. Сказанное выше иллюстрируется рис. 1 и 2. Из рисунков видно также, что стандартный коэффициент корреляции Q(E,t) изменяет свой знак примерно в том же месте, что и $Q(E^{-2},t)$. Математическое моделирование показывает, что наиболее устойчивой к случайным флуктуациям из трех функций $(D(t), Q(E^{-2},t), u Q(E,t))$ является Q(E,t).

Как видно из рис. 1 и 2, отвечающие непосредственным наблюдениям функции $Q(E, t_d)$ по модулю либо близки к единице (*IMB*), либо одного с ней порядка (*KII*), т.е. имеет место явная корреляция «*E*- t_d ». Функция $Q(E, t_d)$ характеризует Q(E, t) вблизи детектора. Информацию о Q(E, t) вблизи источника могут дать лишь современные астрофизические модели коллапсирующих звёздных коров.

Для расчета усредненного по нейтринной вспышке коэффициента корреляции $\langle Q(E,t) \rangle$ были использованы результаты работы [4]. В этой работе совместно численно решались уравнения гидродинамики (в рамках общей теории относительности) и уравнения многогруппового (по энергиям) переноса нейтрино с учетом всех типов нейтрино и антинейтрино. В [4] представлены, в частности, необходимые для расчета Q(E,t) светимость для \overline{V}_e и средняя мгновенная (при t=const) энергия \overline{V}_e как функции времени.

На стадии охлаждения кора ($t \gtrsim 1.2$ сек), в согласии с графическими данными [4], предполагалось экспоненциальное во времени уменьшение температуры нейтриносферы с постоянной времени $\tau_T = 5.6$ сек.

Мгновенные энергетические спектры \overline{V}_e аппроксимировались распределением Ферми-Дирака (Ф-Д). Такие спектры, рассчитанные в [4], отличны от Ф-Д. Они демонстрируют более быстрое падение в области высоких энергий \overline{V}_e . Один из вариантов расчета использовал модельные энергетические спектры \overline{V}_e с такой же особенностью при высоких энергиях [7].

Результирующие значения $\langle Q(E,t) \rangle$ отличаются при этом менее, чем на 10%. Это, вероятно, обусловлено тем, что в расчетах фиксировались средние мгновенные энергии \overline{V}_e согласно данным [4].

Для вычисления модельной теоретической величины $\langle Q(E,t) \rangle$ в том же духе, что и выборочных эмпирических значений Q(E,t), использовался следующий подход. Методом Монте-Карло разыгрывались величины E_i и t_i

чтобы образовать выборки объемом *n* (как правило, эти объемы совпадали с эмпирическими). Далее для каждой *k*-ой выборки вычислялось значение $\langle Q(E,t) \rangle_k$, и затем проводилось усреднение по *k* (k_{max} =500). Полученные полосы значений $\langle Q(E,t) \rangle$, ограниченные точечными прямыми, как результат варьирования энергетических спектров \overline{V}_e и объемов *n*, представлены на рис. 1 и 2. Из рисунков видно, что модуль $\langle Q(E,t) \rangle$ много меньше единицы, т.е. в среднем уровень «*E-t*» корреляции в нейтринной вспышке мал. Это обусловлено большой ролью фазы аккреции в ходе гравитационного коллапса звёздного кора. На стадии аккреции, характеризующейся положительным знаком Q(E,t), для коров с массой $\approx 2M_{\odot}$ испускается больше половины \overline{V}_e [4, 5].

Фазе охлаждения присущи отрицательные значения Q(E,t). Таким образом при вычислении $\langle Q(E,t) \rangle$ обе фазы как бы компенсируют друг друга. Высокий энергетический порог регистрации нейтрино E_c повышает роль фазы аккреции, т.к. в этой фазе испускаются более энергичные \overline{V}_e . В расчетах использовались значения $E_c=20$ МэВ (*IMB*) и $E_c=8$ МэВ (*KII*). Отсюда понятен положительный зазор между величинами Q(E,t) для *IMB* с одной стороны и *KII* с другой (см. рис. 1 и 2). Большие по модулю и отрицательные по знаку разности ($Q(E,t_d) - \langle Q(E,t) \rangle$), характеризующие нейтринные события в двух детекторах, приводят к мысли, что наблюдаемые коэффициенты корреляции $Q(E,t_d)$ связаны в основном с эффектом запаздывания менее энергичных нейтрино согласно (1), т.е. свидетельствуют о ненулевой массе \overline{V}_e .

Определяя области пересечения кривых Q(E,t) (как функции E_0) с полосами $\langle Q(E,t) \rangle$, получаем оценки E_0 для *IMB* 26÷28 эВ и для *KII* 13÷14 эВ.

Если считать измерения *IMB* и *KII* равноточными, E_0 электронного антинейтрино можно оценить следующим образом

 $E_0 = 20 \pm 9$ 9B,

(7)

где приведенная погрешность есть среднее квадратичное отклонение для выборки объёма *n*=2.

Полагая, что эта погрешность имеет случайный характер, используем распределение Стьюдента с числом степеней свободы m=1 для оценки вероятности того, что справедливо утверждение $E_0 \leq 2$ эВ. Эта вероятность не превышает 0.15. Таким образом, с уровнем значимости ~85% можно отбросить это предположение.

Отвечая на поставленный ранее вопрос, можно сказать, что минимум D(t) (по шкале E_0) соответствует области возможных значений E_0 , так как этот минимум связан с низким уровнем корреляции Q(E,t).

Помимо случайных ошибок «истинную» величину E_0 может искажать исходная установка, что все нейтринные события обусловлены процессом захвата (4). В [6] рассматривалось предположение, что событие №4 в *KII* вызвано рассеянием нейтрино на электронах. Учет такой возможности усложняет анализ, так как требует, в частности, построения функции $F(E,t;E_c)$, включающей помимо \overline{V}_e все иные типы нейтрино и антинейтрино. Тем не менее с иллюстративной целью рассмотрим, как изменяются значения D(t) и Q(E,t) (в зависимости от E_0), если событие №4 (*KII*) трактовать как рассеяние \overline{V}_e .

При рассмотрении гравитационных коллапсов звёздных коров энергию испускаемых нейтрино ограничивают величиной ~50 МэВ. В этом случае электроны отдачи с энергией, превышающей E_c , должны рассеиваться на углы $\varphi \lesssim 20^{\circ}$.

Предполагая для события №4 $\varphi = 10^{\circ}$, получаем E=29 МэВ (вместо 10.6 МэВ в случае захвата).

Такое значение E_i (*i*=4) приводит к существенному изменению величин D(t) и Q(E,t). В частности, $D(t_d)=24.6$ (27), $D_{min}(t)=9$ (20), $Q(E,t_d)=-0.68$ (-0.42). Здесь в скобках указаны числа, получающиеся для процесса захвата.

Пересечение оси E_0 кривой Q(E,t) происходит при значении E_0 , которое на 3 эВ превышает величину, представленную на рис. 2. При этом для оценки E_0 получаем

$$E_0 = 22 \pm 7 \ \text{3B.}$$
 (8)

Рассмотренный пример показывает, что учет возможности ve- рассеяния позволяет сблизить результаты, полученные по данным обоих детекторов, но не меняет существенно оценку массы \overline{V}_{e} .

Чтобы учесть влияние неточностей в определение энергии позитронов E_+ в черенковских детекторах, использовались ошибки δE_+ (стандартные средние квадратичные отклонения), приведенные в [1, 2]. Методом Монте-Карло разыгрывались величины \widetilde{E}_{+i} для нормального распределения с заданной величиной δE_{+i} и $M\widetilde{E}_{+i} = E_{+i}$. В результате были получены выборки объёмом n (n=10 (KII) и n=8 (IMB)) для \widetilde{E}_+ и \widetilde{E} . В каждой

выборке величин \tilde{E} рассчитывался коэффициент корреляции $Q(\tilde{E},t)$ для ряда значений E_0 . Для фиксированной величины E_0 использовались k выборок (k=500), чтобы построить распределение (гистограмму) по величине Q. Примеры таких распределений даны на рис. 3. На рис. 1 и 2 пунктирные кривые ограничивают ширину на полувысоте этих распределений (сглаженных гистограмм). Видно, что распределения имеют достаточно большую ширину.

Возникает вопрос, насколько значимым является различие величин Q(E,t)для $E_0=0 \div 2$ эВ (проведенный анализ не может различить E_0 в этом интервале) и для значений $E_{0\nu}$, отвечающих возможной массе \overline{V}_e , в каждом из детекторов? На рис. З представлены распределения по Q для $E_{0\nu}=27$ эВ (*IMB*) и $E_{0\nu}=14$ эВ (KII) и аналогичные распределения для $E_{0\nu}=0\div 2$ эВ. Области пересечения позволяют оценить вероятность W совпадения распределений для $E_0=0\div 2$ эВ и $E_{0\nu}$ следующим образом

W(IMB) ≅0.23 и *W(KII)* ≅0.4

Вероятность того, что, несмотря на данные обоих детекторов (независимые измерения), распределения для $E_0=0\div 2$ эВ и $E_{0\nu}$ не различаются составляет

$W = W(IMB) \ge W(KII) \cong 0.09$

Таким образом, утверждение, что проведенный анализ не в состоянии различить $E_0=0\div 2$ эВ и оценку E_0 в (7) можно отвергнуть с уровнем значимости ~90%.

В изложенном выше анализе использовались данные [4], относящиеся к железному звёздному кору с массой $2M_{\odot}$. На рис.4 гладкой кривой представлен интегральный темп регистрации нейтрино для детектора *IMB*, теоретически предсказанный в [4]. Ступенчатый интегральный спектр, обозначенный пунктирной линией, соответствует экспериментальным данным. Видно, что хорошего согласия не наблюдается. На этом основании

в [4] сделан вывод, что следует перейти к кору с иной массой (1.35 M_{\odot}).

Действительно, применяя критерий Колмогорова-Смирнова, можно

отвергнуть теоретическую модель для $2M_{\odot}$ с уровнем значимости ~99%. Однако, в [4] не учитывается запаздывание медленных нейтрино относительно быстрых по пути от источника к детектору, т.е. неявно рассматривается случай $E_0=0$.

На том же рисунке сплошными линиями изображен интегральный ступенчатый спектр для E_0 =28 эВ.

Этот спектр гораздо лучше согласуется с теорией и можно показать, что

для него теоретическая модель кора с массой $2M_{\odot}$ не может быть отброшена с обычно используемыми уровнями значимости. Отметим, что значение $E_0=28$ эВ, найденное путем подбора из условия наилучшего согласия с теоретической кривой, по существу совпадает с величиной, полученной изложенным выше способом.

Интересно сравнить оценки (7) и (8) с результатами экспериментов, в которых масса \overline{V}_e определялась по данным β -распада трития. Новым в этих экспериментах является открытие аномальной структуры β -спектров [8, 9] – весьма слабой линии вблизи верхней границы β -спектра. В [10] предложен подход, позволяющий с учетом аномальной структуры получить значение

$$E_0 = 20 \pm 5 \text{ sB}.$$

Таким образом, результаты лабораторных и астрофизических экспериментов согласуются между собой.

Приложение

Одной из первых работ, посвященных анализу нейтринных событий от SN1987A, была [11]. Для оценки возможной величины E_0 авторы использовали метод определения «максимального размаха» Δt (т.е. разности во времени между первым и последним событием в выборке) как функции E_0 .

Так обрабатывались только данные *КІІ*. Результат расчета представлен на рис. 5а кривой 1. Видно, что имеет место монотонный рост Δt . Далее авторы [11] предположили, что верхняя граница E_0 отвечает двукратному увеличению Δt по сравнению с величиной Δt при $E_0=0$.

Этот критерий дает неравенство

$$E_0 \le 11 \text{ sB} \tag{1.1}$$

Результат (1.П) в последующем часто цитировался другими авторами. Но упомянутый критерий является весьма произвольным, что авторы [11] и не отрицают.

Выбор метода «максимального размаха» можно считать неудачным. Событие №3 в данных КІІ, по-видимому, является фоновым [4] и не учитывалось в нашем анализе. По мере роста E_0 именно это событие (малые значения E и t_d) определяют величину Δt , тогда как большинство других событий на Δt не влияют. На рис. 5а в кривой 2 вклад события №3 отсутствует. Видно, что при этом монотонного роста Δt не наблюдается, и минимум кривой 2 имеет место при $E_0 \approx 10$ эВ.

Если бы авторы [11] находили $\Delta t(E_0)$ по данным *IMB*, они получили бы кривую на рис. 5b, которая имеет минимум при $E_0 \approx 26$ эB, что совпадает с приводимыми нами значениями.

Другая попытка получить верхний предел для *E*⁰ была сделана в [12]. Авторы нашли, что

$$E_0 \le 16 \text{ pB} \tag{2.\Pi}$$

с уровнем значимости ~95%. Для определения этого уровня использовался критерий Колмогорова-Смирнова (КС).

При этом авторы [12], теоретическую кривую (точнее гистограмму, находимую методом Монте-Карло) подгоняли под экспериментальные данные с помощью метода максимального правдоподобия с учетом изменения E_0 . Однако процедура такого фитирования модельной кривой является запрещенной для критерия (КС) и полученный предел (2.П) является некорректным.

Литература

- [1] K.Hirata et al., Phys. Rev. Lett. 58. 1490 (1987).
- [2] R.M. Bionta et al., Phys. Rev. Lett. 58, 1494 (1987).
- [3] Г.Т. Зацепин, Письма ЖЭТФ 8, 333 (1968).
- [4] S.W. Bruenn, Phys. Rev. Lett. 59, 938 (1987).
- [5] D.N. Schramm, J.W. Truran, Physics reports 189, No2, 89, (1990).
- [6] E.W. Kolb, A.J. Stebbins, M.S. Turner, Phys. Rev D 35, 3598 (1987).
- [7] Д.К. Надёжин, И.В. Отрощенко, Астрон. ж. 57, 78 (1980).
- [8] W. Stoeffl, D.J. Decman, Phys. Rev. Lett. 75, 3237 (1995).
- [9] A.I. Belesev et al., Phys. Lett. B350, 263 (1995).
- [10] Б.И. Горячев, Краткие сообщения по физике 3, 33 (2003).
 [Bulletin of the Lebedev Physics institute NO 3, 2003];
 Б.И. Горячев, Препринт НИИЯФ МГУ 2001-41/681.
- [11] J.N. Bahcall, S.L. Glashow, Nature 326, 476 (1987).
- [12] D.N. Spergel, J.N. Bahcall, Phys. Lett. B200, 366 (1988).

Рис. 1. Результаты статистического анализа нейтринных событий в детекторе IMB.

- (а) Зависимость от E_0 (предполагаемой энергии покоя \overline{V}_e) дисперсии D(t)
- (b) Зависимость от E_0 коэффициентов корреляции $Q(E^{-2},t)$ кривая 1 и Q(E,t) кривая 2. Пунктирные кривые ограничивают ширину на полувысоте распределений по Q(E,t), полученных методом Монте-Карло. Точками показана полоса усредненных по нейтринной вспышке модельных значений < Q(E,t) >

Рис. 2. То же, что на рис. 1 для нейтринных событий в детекторе КІІ.

- Рис.3. Распределения по *Q*(*E*,*t*), смоделированные методом Монте-Карло. Учтены погрешности определения энергии позитронов в детекторах.
- (а) Детектор *IMB*: тонкой линией изображено распределение для E_0 =0÷2 эВ, толстой E_0 =27 эВ
- (b) Детектор *KII*: тонкой линией изображено распределение для E_0 =0÷2 эВ, толстой E_0 =14 эВ

Заштрихованы области перекрытия гистограмм.

Рис. 5. «Максимальный размах» нейтринных событий во времени как функция E_0^2 . (a) Детектор KII (d = 50 Kpc):

1-учтены 11 событий

2-учтены 10 событий (изъято событие № 3)

(b) Детектор IMB (d = 70 Kpc) учтены все 8 событий

Борис Иванович Горячев

СТАТИСТИЧЕСКИЙ АНАЛИЗ НЕЙТРИННЫХ СОБЫТИЙ ОТ ВСПЫШКИ *SN1987A* В ЧЕРЕНКОВСКИХ ДЕТЕКТОРАХ: ОЦЕНКА МАССЫ ЭЛЕКТРОННОГО АНТИНЕЙТРИНО

Препринт НИИЯФ МГУ 2005/786

Работа поступила в ОНТИ 12.07.2005 г.

ИД № 00545 от 06.12.1999 г.

Издательство УНЦ ДО

117246, Москва, ул. Обручева, 55А Тел./факс (095) 718-6966, 718-7785 e-mail: <u>izdat@abiturcenter.ru</u> <u>http://abiturcenter.ru/izdat</u>

Подписано в печать 13.07.2005 Формат 60х90/16 Бумага офсетная №2, Усл. печ.л. 1,12 Тираж 50 экз. Заказ №845

Отпечатано в Мини-типографии УНЦ-ДО <u>http://abiturcenter.ru/print</u> в полном соответствии с качеством представленного оригинал-макета