LOMONOSOV MOSCOW STATE UNIVERSITY

SKOBELTSYN INSTITUTE OF NUCLEAR PHYSICS (SINP)

Andrei I. Davydychev

FOUR-POINT FUNCTION IN GENERAL KINEMATICS THROUGH GEOMETRICAL SPLITTING AND REDUCTION

MSU-SINP Preprint 2017-1/891

Andrei I. Davydychev
davyd@theory.sinp.msu.ru

FOUR-POINT FUNCTION IN GENERAL KINEMATICS THROUGH GEOMETRICAL SPLITTING AND REDUCTION

Preprint MSU SINP 2017-1/891

Abstract

It is shown how the geometrical splitting of N-point Feynman diagrams can be used to simplify the parametric integrals and reduce the number of variables in the occurring functions. As an example, a calculation of the dimensionally-regulated one-loop four-point function in general kinematics is presented.

Андрей Иванович Давыдычев

ЧЕТЫРЁХТОЧЕЧНАЯ ФУНКЦИЯ В ОБЩЕЙ КИНЕМАТИКЕ ЧЕРЕЗ ГЕОМЕТРИЧЕСКОЕ РАЗБИЕНИЕ И УПРОЩЕНИЕ

Препринт НИИЯФ МГУ № 2017-1/891
Аннотация

В работе показано, как можно использовать геометрическое разбиение N-точечных диаграмм Фейнмана для упрощения параметрических интегралов и уменьшения числа переменных в получаемых функциях. В качестве примера рассматривается вычисление размерно-регуляризованной однопетлевой четырёхточечной функиии в общей кинематике.

Four-point function in general kinematics through geometrical splitting and reduction

Andrei I Davydychev
Institute for Nuclear Physics, Moscow State University, 119992 Moscow, Russia
E-mail: davyd@theory.sinp.msu.ru

Abstract

It is shown how the geometrical splitting of N-point Feynman diagrams can be used to simplify the parametric integrals and reduce the number of variables in the occurring functions. As an example, a calculation of the dimensionally-regulated one-loop four-point function in general kinematics is presented.

1. Introduction

In the general off-shell case, one-loop N-point diagrams (shown in figure 1) depend on $\frac{1}{2} N(N-1)$ momentum invariants $k_{j l}^{2}=\left(p_{j}-p_{l}\right)^{2}$ and N masses of the internal particles m_{i}. Here and below, for the corresponding scalar integrals we follow the notation $J^{(N)}\left(n ;\left\{\nu_{i}\right\} \mid\left\{k_{j l}^{2}\right\},\left\{m_{i}\right\}\right)$ used in [1], where ν_{i} are the powers of the internal scalar propagators, and the space-time dimension is denoted as n, so that we can also deal with the dimensionally-regulated integrals with $n=4-2 \varepsilon[2]$. Below we will mainly consider the cases when all $\nu_{i}=1$.

A geometrical interpretation of kinematic invariants and other quantities related to N point Feynman diagrams helps us to understand the analytical structure of the results for these diagrams. As an example, singularities of the general three-point function can be described pictorially through a tetrahedron constructed out of the external momenta and internal masses. Such a geometrical visualization can be used to derive Landau equations defining the positions of possible singularities [3] (see also in [4]).

In $[5,6,7]$ it was demonstrated how such geometrical ideas could be used for an analytical calculation of one-loop N-point diagrams. For the geometrical interpretation, a "basic simplex" in N-dimensional Euclidean space is employed (a triangle for $N=2$, a

Figure 1. N-point one-loop diagram tetrahedron for $N=3$, etc.), and the obtained results are expressed in terms of an integral over an ($N-1$)-dimensional spherical (or hyperbolic) simplex, which corresponds to the intersection

Figure 2. Momenta and masses in (a) two-point (b) three-point and (c) four-point diagrams.
of the basic simplex and the unit hypersphere (or the corresponding hyperbolic hypersurface), with a weight function depending on the angular distance θ between the integration point and the point 0 , corresponding to the height of the basic simplex (see in [5]). For $n=N$ this weight function is equal to 1 , and the results simplify: for the case $n=N=3$ see in [8], and for the case $n=N=4$ see in [9, 10]. Other interesting examples of using the geometrical approach can be found, e.g., in [11].

In this paper we will demonstrate that the natural way of splitting the basic simplex, as prescribed within the geometrical approach discussed above, leads to a reduction of the effective number of independent variables in separate contributions obtained as a result of such splitting [12]. Moreover, by considering examples with $N \leq 4$ we will show that this reduction leads to simplifications in the corresponding Feynman parametric integrals, which can be explicitly calculated in terms of the (generalized) hypergeometric functions.

2. Two-point function

For the two-point function (see figure 2a), there is only one external momentum invariant k_{12}^{2}, and the sides of the corresponding basic triangle are m_{1}, m_{2} and $K_{12} \equiv \sqrt{k_{12}^{2}}$ (see figure 3a). The angle τ_{12} between the sides m_{1} and m_{2} is defined through $\cos \tau_{12} \equiv c_{12}=$ $\left(m_{1}^{2}+m_{2}^{2}-k_{12}^{2}\right) /\left(2 m_{1} m_{2}\right)$, and (in the spherical case) the integration goes over the arc τ_{12} of the unit circle, as shown in figure 3b.

(a)

(b)

Figure 3. Two-point case: (a) the basic triangle and (b) the arc τ_{12}.

For splitting we use the height of the basic triangle, $m_{0}=m_{1} m_{2} \sin \tau_{12} / \sqrt{k_{12}^{2}}$, and obtain two triangles with the sides ($m_{1}, m_{0}, K_{01} \equiv \sqrt{k_{01}^{2}}$) and $\left(m_{2}, m_{0}, K_{02} \equiv \sqrt{k_{02}^{2}}\right.$), respectively. By construction, $K_{01}+K_{02}=K_{12}$. Here $k_{01}^{2}=\left(k_{12}^{2}+m_{1}^{2}-m_{2}^{2}\right)^{2} /\left(4 k_{12}^{2}\right)$ and $k_{02}^{2}=\left(k_{12}^{2}-m_{1}^{2}+m_{2}^{2}\right)^{2} /\left(4 k_{12}^{2}\right)$ (note that $k_{01}^{2}=m_{1}^{2}-m_{0}^{2}$ and $k_{02}^{2}=m_{2}^{2}-m_{0}^{2}$). Each of the resulting integrals can be associated with a two-point function, and we arrive at the following decomposition [12]:

$$
\begin{align*}
J^{(2)}\left(n ; 1,1 \mid k_{12}^{2} ; m_{1}, m_{2}\right)=\frac{1}{2 k_{12}^{2}} & \left\{\left(k_{12}^{2}+m_{1}^{2}-m_{2}^{2}\right) J^{(2)}\left(n ; 1,1 \mid k_{01}^{2} ; m_{1}, m_{0}\right)\right. \\
& \left.+\left(k_{12}^{2}-m_{1}^{2}+m_{2}^{2}\right) J^{(2)}\left(n ; 1,1 \mid k_{02}^{2} ; m_{2}, m_{0}\right)\right\} . \tag{1}
\end{align*}
$$

This is an example of a functional relation between integrals with different momenta and masses, similar to those described in [13]. Moreover, as shown in [12], we can represent the right-hand side in terms of the equal-mass integrals $J^{(2)}\left(n ; 1,1 \mid 4 k_{01}^{2} ; m_{1}, m_{1}\right)$ and $J^{(2)}\left(n ; 1,1 \mid 4 k_{02}^{2} ; m_{2}, m_{2}\right)$.

Let us look at the number of variables. In the original integral $J^{(2)}\left(n ; 1,1 \mid k_{12}^{2} ; m_{1}, m_{2}\right)$ we have three independent variables: two masses and one momentum invariant (out of them we can construct two dimensionless variables). In the integral $J^{(2)}\left(n ; 1,1 \mid k_{01}^{2} ; m_{1}, m_{0}\right)$ we have one extra condition on the variables, $k_{01}^{2}=m_{1}^{2}-m_{0}^{2}$, so that we get two independent variables (i.e., one dimensionless variable).

This can also be seen in the integrands of Feynman parametric integrals: for the original two-point integral, the quadratic form is

$$
\begin{equation*}
J^{(2)}\left(n ; 1,1 \mid k_{12}^{2} ; m_{1}, m_{2}\right) \Rightarrow\left[\alpha_{1} \alpha_{2} k_{12}^{2}-\alpha_{1} m_{1}^{2}-\alpha_{2} m_{2}^{2}\right] \tag{2}
\end{equation*}
$$

whereas for one of the resulting integrals after splitting, remembering that $\alpha_{1}+\alpha_{2}=1$, we get

$$
\begin{equation*}
J^{(2)}\left(n ; 1,1 \mid k_{01}^{2} ; m_{1}, m_{0}\right) \Rightarrow\left[\alpha_{1} \alpha_{2} k_{01}^{2}-\alpha_{1} m_{1}^{2}-\alpha_{2} m_{0}^{2}\right]=-\left[\alpha_{1}^{2} k_{01}^{2}+m_{0}^{2}\right] \tag{3}
\end{equation*}
$$

In this way, we obtain the following result in arbitrary dimension:

$$
\begin{align*}
J^{(2)}\left(n ; 1,1 \mid k_{01}^{2} ; m_{1}, m_{0}\right) & =\mathrm{i} \pi^{n / 2} \Gamma(2-n / 2) \int_{0}^{1} \int_{0}^{1} \frac{\mathrm{~d} \alpha_{1} \mathrm{~d} \alpha_{2} \delta\left(\alpha_{1}+\alpha_{2}-1\right)}{\left[\alpha_{1}^{2} k_{01}^{2}+m_{0}^{2}\right]^{2-n / 2}} \\
& =\mathrm{i} \pi^{n / 2} \frac{\Gamma(2-n / 2)}{\left(m_{0}^{2}\right)^{2-n / 2}}{ }_{2} F_{1}\left(\left.\begin{array}{c}
1 / 2,2-n / 2 \\
3 / 2
\end{array} \right\rvert\,-\frac{k_{01}^{2}}{m_{0}^{2}}\right) \tag{4}
\end{align*}
$$

where ${ }_{2} F_{1}$ is the Gauss hypergeometric function. Similar expression for the second integral, $J^{(2)}\left(n ; 1,1 \mid k_{02}^{2} ; m_{0}, m_{2}\right)$, can be obtained by permutation $1 \leftrightarrow 2$. Therefore, the result for the two-point function in arbitrary dimension can be expressed in terms of a combination of two ${ }_{2} F_{1}$ functions of a single dimensionless variable (see, e.g., in $[5,14]$) whose ε-expansion is known to any order $[15,16]$.

3. Three-point function

For the three-point function (see figure 2 b), there are three external momentum invariants, k_{12}^{2}, k_{13}^{2} and k_{23}^{2}, and the sides of the corresponding basic tetrahedron are $m_{1}, m_{2}, m_{3}, K_{12} \equiv \sqrt{k_{12}^{2}}$, $K_{13} \equiv \sqrt{k_{13}^{2}}$ and $K_{23} \equiv \sqrt{k_{23}^{2}}$ (see figure 4a). The angles τ_{12}, τ_{13} and τ_{23} between the sides m_{1}, m_{2} and m_{3} are defined through $\cos \tau_{j l} \equiv c_{j l}=\left(m_{j}^{2}+m_{l}^{2}-k_{j l}^{2}\right) /\left(2 m_{j} m_{l}\right)$, and (in the spherical case) the integration extends over the spherical triangle 123 of the unit sphere, see in figure 4 b .

For the splitting we use the height of the basic tetrahedron, m_{0}, and obtain three tetrahedra, as shown in figure $5 a$. One of them has the sides $m_{1}, m_{2}, m_{0}, K_{12} \equiv \sqrt{k_{12}^{2}}, K_{01} \equiv \sqrt{k_{01}^{2}}$ and $K_{02} \equiv \sqrt{k_{02}^{2}}$, and the sides for the others can be obtained by permutation of the indices.

Figure 4. Three-point case: (a) the basic tetrahedron and (b) the solid angle.

Figure 5. (a) Splitting the basic tetrahedron into three tetrahedra and (b) further splitting into six tetrahedra.

Here $k_{01}^{2}=m_{1}^{2}-m_{0}^{2}, k_{02}^{2}=m_{2}^{2}-m_{0}^{2}, k_{03}^{2}=m_{3}^{2}-m_{0}^{2}$, and $m_{0}=m_{1} m_{2} m_{3} \sqrt{D^{(3)} / \Lambda^{(3)}}$, where $\Lambda^{(3)}=\frac{1}{4}\left[2 k_{12}^{2} k_{13}^{2}+2 k_{13}^{2} k_{23}^{2}+2 k_{23}^{2} k_{12}^{2}-\left(k_{12}^{2}\right)^{2}-\left(k_{13}^{2}\right)^{2}-\left(k_{23}^{2}\right)^{2}\right]$, and $D^{(3)}=\operatorname{det}\left\|c_{j l}\right\|$ is the Gram determinant, see in $[5,6]$ for more details. Each of the resulting integrals can be associated with a specific three-point function, and we arrive at the following decomposition:

$$
\begin{align*}
J^{(3)}\left(n ; 1,1,1 \mid k_{23}^{2}, k_{13}^{2}, k_{12}^{2} ; m_{1}, m_{2}, m_{3}\right)= & \frac{m_{1}^{2} m_{2}^{2} m_{3}^{2}}{\Lambda^{(3)}}\left\{\frac{F_{1}^{(3)}}{m_{1}^{2}} J^{(3)}\left(n ; 1,1,1 \mid k_{23}^{2}, k_{03}^{2}, k_{02}^{2} ; m_{0}, m_{2}, m_{3}\right)\right. \\
& +\frac{F_{2}^{(3)}}{m_{2}^{2}} J^{(3)}\left(n ; 1,1,1 \mid k_{03}^{2}, k_{13}^{2}, k_{01}^{2} ; m_{1}, m_{0}, m_{3}\right) \\
& \left.+\frac{F_{3}^{(3)}}{m_{3}^{2}} J^{(3)}\left(n ; 1,1,1 \mid k_{02}^{2}, k_{01}^{2}, k_{12}^{2} ; m_{1}, m_{2}, m_{0}\right)\right\}, \tag{5}
\end{align*}
$$

with

$$
\begin{equation*}
F_{3}^{(3)}=\frac{1}{4 m_{1}^{2} m_{2}^{2}}\left[k_{12}^{2}\left(k_{13}^{2}+k_{23}^{2}-k_{12}^{2}+m_{1}^{2}+m_{2}^{2}-2 m_{3}^{2}\right)-\left(m_{1}^{2}-m_{2}^{2}\right)\left(k_{13}^{2}-k_{23}^{2}\right)\right] \tag{6}
\end{equation*}
$$

etc., so that $\sum_{i=1}^{3}\left(F_{i}^{(3)} / m_{i}^{2}\right)=\Lambda^{(3)} /\left(m_{1}^{2} m_{2}^{2} m_{3}^{2}\right)$.
By dropping perpendiculars onto the sides $K_{12} \equiv \sqrt{k_{12}^{2}}$, etc., each of the resulting tetrahedra can be split into two, so that in total we get six "birectangular" tetrahedra, as shown in figure 5b. In this way, we get the following relations for the integrals on the right-hand side of equation (5):

$$
\begin{align*}
& J^{(3)}\left(n ; 1,1,1 \mid k_{02}^{2}, k_{01}^{2}, k_{12}^{2} ; m_{1}, m_{2}, m_{0}\right) \\
&= \frac{1}{2 k_{12}^{2}}\left\{\left(k_{12}^{2}+m_{1}^{2}-m_{2}^{2}\right) J^{(3)}\left(n ; 1,1,1 \mid k_{00^{\prime}}^{2}, k_{01}^{2}, k_{10^{\prime}}^{2} ; m_{1}, m_{0^{\prime}}, m_{0}\right)\right. \\
&\left.+\left(k_{12}^{2}-m_{1}^{2}+m_{2}^{2}\right) J^{(3)}\left(n ; 1,1,1 \mid k_{02}^{2}, k_{00^{\prime}}^{2}, k_{20^{\prime}}^{2} ; m_{0^{\prime}}, m_{2}, m_{0}\right)\right\} \tag{7}
\end{align*}
$$

etc. The notation 0^{\prime} is explained in figure 6 ; in particular, $m_{0^{\prime}}$ is the distance between the points M and 0^{\prime}, whereas $K_{10^{\prime}}=\sqrt{k_{10^{\prime}}^{2}}$ and $K_{20^{\prime}}=\sqrt{k_{20^{\prime}}^{2}}$ are the distances between the points $\left(1,0^{\prime}\right)$ and $\left(2,0^{\prime}\right)$, respectively, so that $K_{10^{\prime}}+K_{20^{\prime}}=K_{12}$. Note that $k_{10^{\prime}}^{2}=\left(k_{12}^{2}+m_{1}^{2}-m_{2}^{2}\right)^{2} /\left(4 k_{12}^{2}\right)$ and $k_{20^{\prime}}^{2}=\left(k_{12}^{2}-m_{1}^{2}+m_{2}^{2}\right)^{2} /\left(4 k_{12}^{2}\right)$, similarly to the reduction of the two-point function.

Let us analyze the number of variables in the occurring three-point integrals. In $J^{(3)}\left(n ; 1,1,1 \mid k_{23}^{2}, k_{13}^{2}, k_{12}^{2} ; m_{1}, m_{2}, m_{3}\right)$ we have six independent variables: three masses and three momentum invariants (out of them we can construct five dimensionless variables). In $J^{(3)}\left(n ; 1,1,1 \mid k_{02}^{2}, k_{01}^{2}, k_{12}^{2} ; m_{1}, m_{2}, m_{0}\right)$ we have two extra conditions on the variables, $k_{01}^{2}=m_{1}^{2}-m_{0}^{2}$ and $k_{02}^{2}=m_{2}^{2}-m_{0}^{2}$, so that we get four independent variables (i.e., three dimensionless variables). For the integral $J^{(3)}\left(n ; 1,1,1 \mid k_{00^{\prime}}^{2}, k_{01}^{2}, k_{10^{\prime}}^{2} ; m_{1}, m_{0^{\prime}}, m_{0}\right)$ we have three relations, $k_{01}^{2}=m_{1}^{2}-m_{0}^{2}$, $k_{00^{\prime}}^{2}=k_{01}^{2}-k_{10^{\prime}}^{2}$ and $k_{00^{\prime}}^{2}=m_{0^{\prime}}^{2}-m_{0}^{2}$. Therefore, the result for the three-point function in

Figure 6. Last step of splitting the basic threedimensional tetrahedron.
arbitrary dimension should be expressible in terms of a combination of functions of two dimensionless variables: indeed, we know that it can be presented in terms of the Appell hypergeometric function F_{1} (see, e.g., in $[6,17,18]$).

This can also be seen in the integrands of the corresponding Feynman parametric integrals: for the original three-point integral, the quadratic form is

$$
\begin{align*}
& J^{(3)}\left(n ; 1,1,1 \mid k_{23}^{2}, k_{13}^{2}, k_{12}^{2} ; m_{1}, m_{2}, m_{3}\right) \\
& \quad \Rightarrow\left[\alpha_{1} \alpha_{2} k_{12}^{2}+\alpha_{1} \alpha_{3} k_{13}^{2}+\alpha_{2} \alpha_{3} k_{23}^{2}-\alpha_{1} m_{1}^{2}-\alpha_{2} m_{2}^{2}-\alpha_{3} m_{3}^{2}\right] \tag{8}
\end{align*}
$$

and for one of the resulting integrals after splitting, remembering that $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$, we get

$$
\begin{align*}
J^{(3)}\left(n ; 1,1,1 \mid k_{00^{\prime}}^{2}, k_{01}^{2},\right. & \left.k_{10^{\prime}}^{2} ; m_{1}, m_{0^{\prime}}, m_{0}\right) \\
& \Rightarrow\left[\alpha_{1} \alpha_{2} k_{10^{\prime}}^{2}+\alpha_{1} \alpha_{3} k_{01}^{2}+\alpha_{2} \alpha_{3} k_{00^{\prime}}^{2}-\alpha_{1} m_{1}^{2}-\alpha_{2} m_{0^{\prime}}^{2}-\alpha_{3} m_{0}^{2}\right] \\
& \Rightarrow-\left[\alpha_{1}^{2} k_{10^{\prime}}^{2}+\left(\alpha_{1}+\alpha_{2}\right)^{2} k_{00^{\prime}}^{2}+m_{0}^{2}\right] . \tag{9}
\end{align*}
$$

In this way, we obtain the following result in arbitrary dimension:

$$
\begin{align*}
& J^{(3)}\left(n ; 1,1,1 \mid k_{00^{\prime}}^{2}, k_{01}^{2}, k_{10^{\prime}}^{2} ; m_{1}, m_{0^{\prime}}, m_{0}\right) \\
& =-\quad-\mathrm{i} \pi^{n / 2} \Gamma(3-n / 2) \iint_{0}^{1} \int_{00}^{11} \frac{\mathrm{~d} \alpha_{1} \mathrm{~d} \alpha_{2} \mathrm{~d} \alpha_{3} \delta\left(\alpha_{1}+\alpha_{2}+\alpha_{3}-1\right)}{\left[\alpha_{1}^{2} k_{10^{\prime}}^{2}+\left(\alpha_{1}+\alpha_{2}\right)^{2} k_{00^{\prime}}^{2}+m_{0}^{2}\right]^{3-n / 2}} \\
& =-\frac{\mathrm{i} \pi^{n / 2} \Gamma(2-n / 2)}{2\left(m_{0}^{2}\right)^{2-n / 2} k_{00^{\prime}}^{2}}\left\{\sqrt{\frac{k_{00^{\prime}}^{2}}{k_{10^{\prime}}^{2}}} \arctan \sqrt{\frac{k_{10^{\prime}}^{2}}{k_{00^{\prime}}^{2}}}\right. \\
& \tag{10}\\
& \left.\quad-\left(\frac{m_{0}^{2}}{m_{0^{\prime}}^{2}}\right)^{2-n / 2} F_{1}\left(1 / 2,1,2-n / 2 ; 3 / 2 \left\lvert\,-\frac{k_{10^{\prime}}^{2}}{k_{00^{\prime}}^{2}}\right.,-\frac{k_{10^{\prime}}^{2}}{m_{0^{\prime}}^{2}}\right)\right\},
\end{align*}
$$

where F_{1} is Appell hypergeometric function of two variables,

$$
F_{1}\left(a, b_{1}, b_{2} ; c \mid x, y\right)=\sum_{j_{1}, j_{2}} \frac{(a)_{j_{1}+j_{2}}\left(b_{1}\right)_{j_{1}}\left(b_{2}\right)_{j_{2}}}{(c)_{j_{1}+j_{2}}} \frac{x^{j_{1}} y^{j_{2}}}{j_{1}!j_{2}!} .
$$

Similar results for other five contributions can be obtained by permutation. Using known transformation formulae for F_{1} we can see that the obtained expression (10) is equivalent to the result presented in [6].

4. Four-point function

For the four-point function (see figure 2c), there are six external momentum invariants. Out of them, $k_{12}^{2}, k_{23}^{2}, k_{34}^{2}$ and k_{14}^{2} are the squared momenta of the external legs, whilst k_{13}^{2} and k_{24}^{2} correspond to the Mandelstam variables s and t. The sides of the corresponding basic fourdimensional simplex are $m_{1}, m_{2}, m_{3}, m_{4}$, and six additional sides $K_{j l} \equiv \sqrt{k_{j l}^{2}}$, as shown in figure 7a. The six angles $\tau_{j l}$ between the corresponding sides m_{j} and m_{l} are defined through $\cos \tau_{j l} \equiv c_{j l}=\left(m_{j}^{2}+m_{l}^{2}-k_{j l}^{2}\right) /\left(2 m_{j} m_{l}\right)$, and (in the spherical case) the integration extends over the spherical tetrahedron 1234 of the unit hypersphere, as shown in figure 7 b (for the hyperbolic case one can use analytic continuation).

For splitting we use the height of the basic simplex, m_{0}, and obtain four simplices, as shown in figures 8 and 8 a . One of them has the sides $m_{1}, m_{2}, m_{3}, m_{0}, K_{12} \equiv \sqrt{k_{12}^{2}}, K_{13} \equiv \sqrt{k_{13}^{2}}$,

Figure 7. Four-point case: (a) the basic simplex and (b) the spherical tetrahedron.

Figure 8. Four-point case: steps of splitting the basic four-dimensional simplex.
$K_{23} \equiv \sqrt{k_{23}^{2}}, K_{01} \equiv \sqrt{k_{01}^{2}}, K_{02} \equiv \sqrt{k_{02}^{2}}$ and $K_{03} \equiv \sqrt{k_{03}^{2}}$, and the sides of the others can be obtained by permutation of the indices. As before, $k_{0 i}^{2}=m_{i}^{2}-m_{0}^{2}(i=1,2,3,4)$, whereas $m_{0}=m_{1} m_{2} m_{3} m_{4} \sqrt{D^{(4)} / \Lambda^{(4)}}$, where $D^{(4)}=\operatorname{det}\left\|c_{j l}\right\|$ and $\Lambda^{(4)}=\operatorname{det}\left\|\left(k_{j 4} \cdot k_{l 4}\right)\right\|$, see in [5] for more details. Each of the four resulting integrals can be associated with a certain fourpoint function. At the next step, in each of the four tetrahedra (drawn in red) we drop the perpendiculars onto the triangle sides, as shown in figure 8b, splitting each of them into three, and then dividing each of the resulting tetrahedra into two, by dropping perpendiculars onto the $\sqrt{k_{j l}^{2}}$ sides, as shown in figure 8c. As a result of this splitting, we get $4 \cdot 3 \cdot 2=24$ simplices.

Let us look at the number of variables. In the integral $J^{(4)}\left(n ; 1,1,1,1 \mid\left\{k_{j l}^{2}\right\} ;\left\{m_{i}\right\}\right)$ we have ten independent variables: four masses and six momentum invariants (out of them we can construct nine dimensionless variables). After the first step (figure 8a) we have three conditions on the variables, $k_{01}^{2}=m_{1}^{2}-m_{0}^{2}$, $k_{02}^{2}=m_{2}^{2}-m_{0}^{2}$ and $k_{03}^{2}=m_{3}^{2}-m_{0}^{2}$, so that we get seven independent variables (i.e., six dimensionless variables). After the second step (figure 8b), we get two extra conditions due to the right triangles, and after the third step (figure 8c) we get one more condition. As a result, for each of the 24 resulting four-point

Figure 9. Last step of splitting the basic fourdimensional simplex.
functions we have six relations, so that we end up with four independent variables (i.e., three dimensionless variables). Therefore, the result for the four-point function in arbitrary dimension should be expressible in terms of a combination of functions of three dimensionless variables, such as, e.g., Lauricella functions and their generalizations (see, e.g., in [18, 19]).

This can also be seen in the integrands of the corresponding Feynman parametric integrals: for the original four-point integral, the quadratic form is

$$
\begin{gather*}
J^{(4)}\left(n ; 1,1,1,1 \mid\left\{k_{12}^{2}, k_{23}^{2}, k_{34}^{2}, k_{14}^{2}, k_{13}^{2}, k_{24}^{2}\right\} ;\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}\right) \\
\Rightarrow\left[\alpha_{1} \alpha_{2} k_{12}^{2}+\alpha_{1} \alpha_{3} k_{13}^{2}+\alpha_{1} \alpha_{4} k_{14}^{2}+\alpha_{2} \alpha_{3} k_{23}^{2}+\alpha_{2} \alpha_{4} k_{24}^{2}+\alpha_{3} \alpha_{4} k_{34}^{2}\right. \\
\left.-\alpha_{1} m_{1}^{2}-\alpha_{2} m_{2}^{2}-\alpha_{3} m_{3}^{2}-\alpha_{4} m_{4}^{2}\right] \tag{11}
\end{gather*}
$$

whereas after the last step of splitting, remembering that $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=1$, we get

$$
\begin{align*}
& J^{(4)}\left(n ; 1,1,1,1 \mid\left\{k_{10^{\prime \prime}}^{2}\right.\right.\left.\left., k_{0^{\prime} 0^{\prime \prime}}^{2}, k_{00^{\prime}}^{2}, k_{01}^{2}, k_{10^{\prime}}^{2}, k_{00^{\prime \prime}}^{2}\right\} ;\left\{m_{1}, m_{0^{\prime \prime}}, m_{0^{\prime}}, m_{0}\right\}\right) \\
& \Rightarrow {\left[\alpha_{1} \alpha_{2} k_{10^{\prime \prime}}^{2}+\alpha_{1} \alpha_{3} k_{10^{\prime}}^{2}+\alpha_{1} \alpha_{4} k_{01}^{2}+\alpha_{2} \alpha_{3} k_{0^{\prime} 0^{\prime \prime}}^{2}+\alpha_{2} \alpha_{4} k_{00^{\prime \prime}}^{2}+\alpha_{3} \alpha_{4} k_{00^{\prime}}^{2}\right.} \\
&\left.\quad \quad-\alpha_{1} m_{1}^{2}-\alpha_{2} m_{0^{\prime \prime}}^{2}-\alpha_{3} m_{0^{\prime}}^{2}-\alpha_{4} m_{0}^{2}\right] \\
& \Rightarrow-\left[\alpha_{1}^{2} k_{10^{\prime \prime}}^{2}+\left(\alpha_{1}+\alpha_{2}\right)^{2} k_{0^{\prime} 0^{\prime \prime}}^{2}+\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{2} k_{00^{\prime}}^{2}+m_{0}^{2}\right] \tag{12}
\end{align*}
$$

The notations 0^{\prime} and $0^{\prime \prime}$ are explained in figure 9 ; in particular, $m_{0^{\prime}}$ is the distance between M and $0^{\prime}, m_{0^{\prime \prime}}$ is the distance between M and $0^{\prime \prime}$, whereas $K_{00^{\prime}}=\sqrt{k_{00^{\prime}}^{2}}, K_{0^{\prime} 0^{\prime \prime}}=\sqrt{k_{0^{\prime} 0^{\prime \prime}}^{2}}$ and $K_{10^{\prime \prime}}=\sqrt{k_{10^{\prime \prime}}^{2}}$ are the distances between the corresponding points $\left(0,0^{\prime}\right),\left(0^{\prime}, 0^{\prime \prime}\right)$ and $\left(1,0^{\prime \prime}\right)$, respectively. In this way, we obtain the following result in arbitrary dimension:

$$
\begin{align*}
J^{(4)} & \left(n ; 1,1,1,1 \mid\left\{k_{10^{\prime \prime}}^{2}, k_{0^{\prime} 0^{\prime \prime}}^{2}, k_{00^{\prime}}^{2}, k_{01}^{2}, k_{10^{\prime}}^{2}, k_{00^{\prime \prime}}^{2}\right\} ;\left\{m_{1}, m_{0^{\prime \prime}}, m_{0^{\prime}}, m_{0}\right\}\right) \\
& =\mathrm{i} \pi^{n / 2} \Gamma(4-n / 2) \iint_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{\mathrm{~d} \alpha_{1} \mathrm{~d} \alpha_{2} \mathrm{~d} \alpha_{3} \mathrm{~d} \alpha_{4} \delta\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}-1\right)}{\left[\alpha_{1}^{2} k_{10^{\prime \prime}}^{2}+\left(\alpha_{1}+\alpha_{2}\right)^{2} k_{0^{\prime} 0^{\prime \prime}}^{2}+\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{2} k_{00^{\prime}}^{2}+m_{0}^{2}\right]^{4-n / 2}} \\
& =\frac{\mathrm{i} \pi^{n / 2} \Gamma(3-n / 2)}{2 k_{0^{\prime} 0^{\prime \prime}}^{2}\left(m_{0}^{2}\right)^{3-n / 2}}\left\{\sqrt{\frac{k_{0^{\prime} 0^{\prime \prime}}^{2}}{k_{10^{\prime \prime}}^{2}}} \arctan \sqrt{\frac{k_{10^{\prime \prime}}^{2}}{k_{0^{\prime} 0^{\prime \prime}}^{2}}}{ }_{2} F_{1}\left(\left.\begin{array}{c}
1 / 2,3-n / 2 \\
3 / 2
\end{array} \right\rvert\,-\frac{k_{00^{\prime}}^{2}}{m_{0}^{2}}\right)\right. \tag{13}\\
& \left.-\left(\frac{m_{0}^{2}}{m_{0^{\prime}}^{2}}\right)^{2-n / 2} \quad F_{N}\left(1,1,3-n / 2,1 / 2,(n-3) / 2,1 / 2 ; 3 / 2,3 / 2,3 / 2 \left\lvert\,-\frac{k_{10^{\prime \prime}}^{2}}{k_{0^{\prime} 0^{\prime \prime}}^{2}}\right.,-\frac{k_{00^{\prime}}^{2}}{m_{0}^{2}},-\frac{k_{10^{\prime}}^{2}}{m_{00^{\prime}}^{2}}\right)\right\}, \tag{14}
\end{align*}
$$

where F_{N} is one of the Lauricella-Saran functions [20],

$$
F_{N}\left(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{1} ; c_{1}, c_{2}, c_{2} \mid x, y, z\right)=\sum_{j_{1}, j_{2}, j_{3}} \frac{\left(a_{1}\right)_{j_{1}}\left(a_{2}\right)_{j_{2}}\left(a_{3}\right)_{j_{3}}\left(b_{1}\right)_{j_{1}+j_{3}}\left(b_{2}\right)_{j_{2}}}{\left(c_{1}\right)_{j_{1}}\left(c_{2}\right)_{j_{2}+j_{3}}} \frac{x^{j_{1}} y^{j_{2}} z^{j_{3}}}{j_{1}!j_{2}!j_{3}!}
$$

5. General remarks and conclusions

The geometrical approach allows us to relate the one-loop N-point Feynman diagrams to certain (hyper)volume integrals in non-Euclidean geometry. Geometrical splitting provides a straightforward way of reducing general integrals to those with lesser number of independent variables. Furthermore, in this way we can predict the set and the number of these variables in the resulting integrals. As shown in [12], for an N-point diagram (depending, in the general off-shell case, on $\frac{1}{2}(N-1)(N+2)$ dimensionless variables), after splitting in N ! pieces we will get a combination of N ! integrals, each of them depending only on $N-1$ variables. For example, in the four-point case we will get functions of three variables, rather than nine.

Geometrically, we can calculate the resulting integrals in the framework of non-Euclidean geometry or, alternatively, represent them again in terms of Feynman parameters. Since some of the variables are connected, the quadratic forms in the integrands of the resulting parametric integrals can be simplified. In this way, for $N=2,3,4$ we get the following quadratic forms:

$$
\begin{aligned}
& J^{(2)}\left(n ; 1,1 \mid k_{01}^{2} ; m_{1}, m_{0}\right) \Rightarrow-\left[\alpha_{1}^{2} k_{01}^{2}+m_{0}^{2}\right] \\
& J^{(3)}\left(n ; 1,1,1 \mid k_{00^{\prime}}^{2}, k_{01}^{2}, k_{10^{\prime}}^{2} ; m_{1}, m_{0^{\prime}}, m_{0}\right) \Rightarrow-\left[\alpha_{1}^{2} k_{10^{\prime}}^{2}+\left(\alpha_{1}+\alpha_{2}\right)^{2} k_{00^{\prime}}^{2}+m_{0}^{2}\right] \\
& J^{(4)}\left(n ; 1,1,1,1 \mid\left\{k_{10^{\prime \prime}}^{2}, k_{0^{\prime} 0^{\prime \prime}}^{2}, k_{00^{\prime}}^{2}, k_{01}^{2}, k_{10^{\prime}}^{2}, k_{00^{\prime \prime}}^{2}\right\} ;\left\{m_{1}, m_{0^{\prime \prime}}, m_{0^{\prime}}, m_{0}\right\}\right) \\
& \quad \Rightarrow-\left[\alpha_{1}^{2} k_{10^{\prime \prime}}^{2}+\left(\alpha_{1}+\alpha_{2}\right)^{2} k_{0^{\prime} 0^{\prime \prime}}^{2}+\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{2} k_{00^{\prime}}^{2}+m_{0}^{2}\right] .
\end{aligned}
$$

Evaluating these integrals for an arbitrary dimension n we can get explicit expressions in terms of (generalized) hypergeometric functions: ${ }_{2} F_{1}$ for $N=2, F_{1}$ for $N=3$, and F_{N} for $N=4$. For $N>4$, in the quadratic forms we should also expect sums of squares of partial sums of α 's (the coefficient of m_{0}^{2} can be understood as the square of the sum of all α 's, equal to one).

Acknowledgements

I am thankful to R Delbourgo and M Yu Kalmykov with whom I started to work on this subject. I am grateful to the organizers of ACAT-2017 for their support and hospitality.

References

[1] Davydychev A I 1991 J. Math. Phys. 321052
Davydychev A I 1992 J. Math. Phys. 33358
[2] 'tHooft G and Veltman M 1972 Nucl. Phys. B 44189
Bollini C G and Giambiagi J J 1972 Nuovo Cim. 12B 20
Ashmore J F 1972 Lett. Nuovo Cim. 4289
Cicuta G M and Montaldi E 1972 Lett. Nuovo Cim. 4329
[3] Landau L D 1959 Nucl. Phys. 13181
[4] Källen G and Wightman A 1958 Mat. Fys. Skr. Dan. Vid. Selsk. 1(6) 1
Mandelstam S 1959 Phys. Rev. 1151741
Cutkosky R E 1960 J. Math. Phys. 1429
Taylor J C 1960 Phys. Rev. 117261
[5] Davydychev A I and Delbourgo R 1998 J. Math. Phys. 394299
[6] Davydychev A I 2006 Nucl. Instr. Meth. A 559293
[7] Davydychev A I 1999 Preprint hep-th/9908032
[8] Nickel B G 1978 J. Math. Phys. 19542
[9] Ortner N and Wagner P 1995 Ann. Inst. Henri Poincaré (Phys. Théor.) 6381
[10] Wagner P 1996 Indag. Math. 7527
[11] Davydychev A I and Delbourgo R 2004 J. Phys. A 374871
Gorsky A and Zhiboedov A 2009 J. Phys. A 42355214
Bloch S and Kreimer D 2010 Commun. Num. Theor. Phys. 4703
Schnetz O 2010 Preprint arXiv:1010.5334
Mason L and Skinner D 2011 J. Phys. A 44135401
Nandan D, Paulos M F, Spradlin M and Volovich A 2013 J. High Energy Phys. JHEP05(2013)105
[12] Davydychev A I 2016 J. Phys.: Conf. Series 762012068
[13] Tarasov O V 2008 Phys. Lett. B 67067 Kniehl B A and Tarasov O V 2009 Nucl. Phys. B 820178
[14] Berends F A, Davydychev A I and Smirnov V A 1996 Nucl. Phys. B 47859
[15] Davydychev A I 2000 Phys. Rev. D 61087701
[16] Davydychev A I and Kalmykov M Yu 2000 Nucl. Phys. B (Proc. Suppl.) 89283
Davydychev A I and Kalmykov M Yu 2001 Nucl. Phys. B 605266
[17] Tarasov O V 2000 Nucl. Phys. B (Proc. Suppl.) 89237
[18] Fleischer J, Jegerlehner F and Tarasov O V 2003 Nucl. Phys. B 672303
[19] Bytev V V, Kalmykov M Yu and Moch S-O 2014 Comput. Phys. Commun. 1853041
[20] Saran S 1955 Acta Math. 93293

Андрей Иванович Давыдычев

ЧЕТЫРЁХТОЧЕЧНАЯ ФУНКЦИЯ В ОБЩЕЙ КИНЕМАТИКЕ ЧЕРЕЗ ГЕОМЕТРИЧЕСКОЕ РАЗБИЕНИЕ И УПРОЩЕНИЕ

