

PROBE OF Extreme Multi-Messenger Astrophysics UHECRS and Cosmic Neutrinos

ODEMMA

ANGELA V. OLINTO

POEMMA: STUDY COLLABORATION

University of Chicago: Angela V. Olinto (PI), R. Diesing

NASA/MSFC: Mark J. Christl (deputy PI), Roy M. Young, Peter Bertone

University of Alabama, Huntsville: James Adams, Patrick Reardon, Evgeny Kuznetsov,

NASA/GSFC: John W. Mitchell, John Krizmanic, Jeremy S Perkins, Julie McEnery, Elizabeth Hays, Floyd Stecker, Tonia Venters

University of Utah: Doug Bergman

Colorado School of Mines: Lawrence Wiencke, Frederic Sarazin, J. Eser

City University of New York, Lehman College: Luis Anchordoqu, Thomas C. Paul, J. F. Soriano

Georgia Institute of Technology: A. Nepomuk Otte

Space Sciences Laboratory, University of California, Berkeley: Eleanor Judd

University of Iowa: Mary Hall Reno

ITALY: Universita di Torino: Mario Edoardo Bertaina, Francesco Fenu, Kenji Shinozaki; INFN Torion: F. Bisconti; Gran Sasso Science Institute: Roberto Aloisio, A. L. Cummings, I. De Mitri; INFN Frascati: Marco Ricci

FRANCE: APC Univerite de Paris 7: Etienne Parizot, Guillaume Prevot; IAP, Paris: C. Guepin

SWITZERLAND: University of Geneva: Andrii Neronov

SLOVAKIA: IEP, Slovak Academy of Science: S. Mackovjak

JAPAN: RIKEN: M. Casolino

GERMANY: KIT: M. Unger; ESO: F. Oikonomou

SCIENTISTS FROM 16+ INSTITUTIONS FROM OWL, JEM-EUSO, AUGER, TA, VERITAS, CTA, FERMI, THEORY

THE EARTH ATMOSPHERE AS A SUB-ATOMIC PARTICLE DETECTOR

Photon

Neutrino

WHAT ARE THE SOURCES OF THE EXTRAGALACTIC ULTRAHIGH ENERGY GOSMIC RAYS?

WHAT ARE SOURCES OF COSMIC NEUTRINOS?

Neutrino

*In addition to blazar TXS 0506+056

UHECR CHALLENGE

WHAT ARE THE SOURCES OF THE EXTRAGALACTIC ULTRAHIGH ENERGY COSMIC RAYS?

WHAT ARE THE SOURCES OF COSMIC NEUTRINOS?

POEMMA:

- UHECR SPECTRUM E > 50 EeV
- UHEC COMPOSITION E > 50 EeV
- UHEC ANISOTROPIES POINTING
- NEUTRING MULTI-MESSENGER COINCIDENCE E>20PeV over full sky

Ventrino

POEMMA: PROBE OF Extreme Multi-Messenger Astrophysics

BASED ON OWL 2002 STUDY, JEM-EUSO, EUSO BALLOON & SPB EXPERIENCE, AND CHANT PROPOSAL

POEMMA IDL MDL AT GSFC IDC

8

IDL JUL 31-AUG 4, 2017 MDL OCT 30-Nov 3, 2017

TABLE I: POEMMA Specifications:

Photomet	ter Components		Spacecraft		
Optics	Schmidt	45° full FoV	Slew rate	90° in 8 min	
	Primary Mirror 4 m diam.		Pointing Res.	0.1°	
	Corrector Lens	3.3 m diam.	Pointing Know.	0.01°	
	Focal Surface	1.6 m diam.	Clock synch.	10 nsec	
	Pixel Size	$3 \times 3 \text{ mm}^2$	Data Storage	7 days	
	Pixel FoV	0.084°	Communication	S-band	
PFC	MAPMT $(1\mu s)$	126,720 pixels	Wet Mass	3,450 kg	
PCC	SiPM (20 ns)	15,360 pixels	Total Power	880 W	
Photometer (One)			Mission	(2 Observatories)	
	Mass	1,550 kg	Lifetime	3 year (5 year goal)	
	Power	590 W	Orbit	525 km, 28.5° Inc	
	Data	<1 GB/day	Orbit Period	95 min	
		2 - 2010 - 200	Observatory Sep	. ~25 - 1000+ km	

Each Observatory = Photometer + Spacecraft; POEMMA Mission = 2 Observatories

POEMMA

HYBRID MM FOCAL SURFACE

UV FLUORESCENCE MAPMTS WITH BG3 FILTER: JEM-EUSO: 1 USEC SAMPLING

CHERENKOV DETECTION WITH SIPMS:

20 NSEC SAMPLING

FOV 2° above limb

POEMMA MISSION

Mission Lifetime:	3 years (5 year goal)		
Orbits:	525 km, 28.5° Inc		
Orbit Period:	95 min		
Satellite Separation:	~25 km – 1000+ km*		
Satellite Position:	1 m (knowledge)		
Pointing Resolution:	0.1°		
Pointing Knowledge:	0.01°		
Slew Rate:	8 min for 90 °		
Satellite Wet Mass:	3860 kg		
Power:	2030 W		
Data:	1 GB/day		
Data Storage:	7 days		
Communication:	S-band (X-band if needed)		
Clock synch (timing):	10 nsec		

Operations:

- Each satellite collects data autonomously
- Coincidences analyzed on the ground
- View the Earth at near-moonless nights, charge in day and telemeter data to ground
- ToO Mode: dedicated com uplink to reorient satellites if desired

CD

CD

Dual Manifest ATLAS V LPF

OBSERVING MODES

NADIR FOR UHECR:

RADIUS 200-400 KM

LIMB FOR NEUTRINOS & UHECRS RADIUS 2.6-3.7 10³ KM

United States

Milwaukee

N

kford

Jshkosh

Chicago

MICHIGAN

Fort Wayne

Grand Rapids

Ann troor Detroit

Toledo

Mexico

13

Cuba

POEMMA: EXPOSURE HISTORY

14

POEMMA UHECRs

PERFORMANCE

SIGNIFICANT INCREASE IN EXPOSURE

GOOD ENERGY, ANGULAR, AND SHOWER MAXIMUM RESOLUTIONS, ACCURATELY MEASURE COMPOSITION

POEMMA UHECRs

PERFORMANCE

SIGNIFICANT INCREASE IN EXPOSURE

GOOD ENERGY, ANGULAR, AND SHOWER MAXIMUM RESOLUTIONS, ACCURATELY MEASURE COMPOSITION, SPECTRUM

POEMMA UHECRs

PERFORMANCE

SIGNIFICANT INCREASE IN EXPOSURE E >50 BeV GOOD ENERGY, ANGULAR, AND SHOWER MAXIMUM RESOLUTIONS, ACCURATELY MEASURE COMPOSITION, SPECTRUM, ANISOTROPIES UNIFORM SKY COVERAGE

TO GUARANTEE THE DISCOVERY OF UHECR SOURCES

POEMMA NEUTRINOS

POEMMA NEUTRINOS

POEMMA designed to observe neutrinos with E > 20 PeVthrough Cherenkov signal of tau decays.

HIGH-ENERGY ASTROPHYSICAL EVENTS GENERATES NEUTRINOS (v_e, v_μ) and 3 neutrino flavors reach Earth (Oscillations). Tau neutrinos generate tau leptons on their way out of the Earth's surface which decay producing up-going 19 showers, detected by POEMMA Artist's rep NS-NS merger. Credit: Credit: NSF/LIGO/ SSU/A. Simonnet.

Artist's rep BH-BH merger. Credit: NASA / JPL/ Swinburne Astron.Prods

Artist's rep WD-WD merger Credit: Ars Technica

POEMMA

NEUTRINO TOO

(Targets of Opportunity) Venters et al 2019

Transient Events few to 100 Million neutrinos/event

10 neutrinos up to 120 Mpc!

arXiv:1906.07209

PDEMMS

Artist's rep TDE (star torn BH). Credit: NASA / CXC / M. Weiss

Tidal Disruption Events

Newborn Pulsars

Crab 965 years ago!

edit: Credits: X-ray: NASA/CXC/ASU/J.Hester et al.; Optical: NASA/HST/ASU/J.Hester et al.

Blazar Flares Gamma Ray Bursts

SWIFT NEUTRON STAR COLLISION V. 2

S-NS merger Animation NASA/ GSFC/Berry & Drezek

ANIMATION: DANA BERRY 310-441-1735 PRODUCED BY ERICA DREZEK

Binary Coalescence

8. 8.			Long Bursts	
Source Class	No. of v's at GC	No. of ν 's at 3 Mpc	Largest Distance for 1.0 ν per event	Model Reference
TDEs	1.12×10^{5}	0.77	2.64 Mpc	Dai and Fang [17] average
TDEs	5.62×10^{5}	3.88	5.91 Mpc	Dai and Fang [17] bright
TDEs	$2.23 imes 10^8$	1.44×10^3	115.20 Mpc	Lunardini and Winter [18] $M_{\text{SMBH}} = 5 \times 10^6 M_{\odot}$ Lumi Scaling Case
TDEs	NA*	$1.07 imes 10^3$	100.03 Mpc	Lunardini and Winter [18] $M_{\text{SMBH}} = 1 \times 10^5 M_{\odot}$ Stron Scaling Case
Blazar Flares	NA*	$1.91 imes 10^2$	42.96 Mpc	RFGBW [19] – FSRQ proton-dominated advective escape model
IGRB Reverse Shock (ISM)	$9.88 imes 10^4$	0.69	2.49 Mpc	Murase [15]
IGRB Reverse Shock (wind)	$2.05 imes 10^7$	143.75	37.36 Mpc	Murase [15]
BH-BH merger	6.94×10^{6}	47.84	20.75 Mpc	Kotera and Silk [20] – $t_{dur} \sim 10$ s
BH-BH merger	$3.48 imes 10^9$	$2.4 imes 10^4$	477.8 Mpc	Kotera and Silk [20] – $t_{\rm dur} \sim 10^{6.7} { m s}$
NS-NS merger	3.58×10^{6}	24.75	12.76 Mpc	Fang and Metzger [21]
WD-WD merger	20.06	0	33.46 kpc	XMMD [22]
Newly-born Crab-like pulsars (p)	$1.56 imes 10^2$	$1.07 imes 10^{-3}$	98.27 kpc	Fang [23]
Newly-born magnetars (p)	$2.1 imes 10^4$	0.13	1.1 Mpc	Fang [23]
Newly-born magnetars (Fe)	$4.07 imes 10^4$	0.26	1.53 Mpc	Fang [23]

GW170817 follow up w ANTARES, ICECUBE, AUGER

arXiv:1710.05839

Artist's rep BH-BH merger. Credit: NASA / JPL/

Swinburne Astron.Prods

Artist's rep NS-NS merger. Credit: Credit: NSF/LIGO/ SSU/A. Simonnet.

Artist's rep WD-WD merger Credit: Ars Technica

IceCube

PDEMMA

OBSERVE BEYONG 20 PEV Full Sky Coverage

arXiv:1906.07209

POEMMA

NEUTRINO TOO

(Targets of Opportunity) Venters et al 2019

Transient Events

few to 100 Million neutrinos/event

arXiv:1906.07209

Long Bursts Largest Distance for No. of ν 's No. of ν 's Model Reference Source Class at GC at 3 Mpc 1.0 ν per event 2.64 Mpc Dai and Fang [17] average TDEs 1.12×10^{5} 0.77Dai and Fang [17] bright TDEs 5.62×10^{5} 3.88 5.91 Mpc Lunardini and Winter [18] 2.23×10^{8} 1.44×10^{3} $M_{\rm SMBH} = 5 \times 10^6 M_{\odot}$ TDEs 115.20 Mpc Lumi Scaling Case Lunardini and Winter [18] $M_{\rm SMBH} = 1 \times 10^5 M_{\odot}$ Strong TDEs 1.07×10^{3} NA* 100.03 Mpc Scaling Case RFGBW [19] - FSRQ Blazar Flares NA* 1.91×10^{2} 42.96 Mpc proton-dominated advective escape model IGRB Reverse 9.88×10^{4} 0.69 2.49 Mpc Murase [15] Shock (ISM) **IGRB** Reverse 2.05×10^{7} 143.75 37.36 Mpc Murase [15] Shock (wind) Kotera and Silk [20] – $t_{dur} \sim 10^4$ 6.94×10^{6} BH-BH merger 47.84 20.75 Mpc BH-BH Kotera and Silk [20] - 3.48×10^{9} 2.4×10^4 477.8 Mpc $t_{\rm dur} \sim 10^{6.7} {
m s}$ merger 3.58×10^{6} Fang and Metzger [21] NS-NS merger 24.75 12.76 Mpc 20.06WD-WD merger 0 33.46 kpc XMMD [22] Newly-born 1.07×10^{-3} Crab-like pulsars 1.56×10^{2} 98.27 kpc Fang^[23] (p) Newly-born 2.1×10^{4} 0.131.1 Mpc Fang [23] magnetars (p) Newly-born 4.07×10^{4} 0.26 1.53 Mpc Fang [23] magnetars (Fe) Short Bursts No. of ν 's No. of ν 's Largest Distance for Model Reference Source Class at GC at 3 Mpc 1.0 ν per event sGRB Extended Emission 1.55×10^{3} 2.23×10^{8} 117.44 Mpc KMMK [16] (moderate) sGRB Prompt 8.10×10^{6} 69.19 26.66 Mpc KMMK [16]

Artist's rep TDE (star torn BH). Credit: NASA / CXC / M. Weiss

M87

EVENT HORIZON TELESCOPE COLLABORATION/MAUNAKEA OBSERVATORIES/ASSOCIATED PRESS

FUNDAMENTAL PHYSICS WITH HIGH-ENERGY COSMIC NEUTRINOS

arXiv:1903.04333

JEM-EUSO PROGRAM

JOINT EXPERIMENT MISSIONS EXTREME UNIVERSE SPACE OBSERVATORY

EUSO-TA (2013-)

EUSO-Balloon (2014)

EUSO-SPB1 (2017)

Mini-EUSO (20119)

EUSO-SPB2 (2021-22)

K-EUSO (2023+)

POEMMA (2028+)

EUSO Balloon: 1st flight and first light on 24-25.8.2014

100

- 120

EUSO-SPB

Extreme Universe Space Observatory on a Super Pressure Balloon

Ultrafast Camera: Photo-Detector Module (PDM) (3x3 ECs = 36 MAPMTS ; 2,304 pixels)

2017 23:51 UTC

arXiv:1703.04513

UHECRS

FLUORESCENCE

EUSO-SPB2

CHERENKOV EMISSION FROM UHECRS TAU NEUTRINO BACKGROUND FLUORESCENCE FROM UHECRS

CHERENKOV

TAULEPTON

TAU NEUTRINO

UHECRS

POEMMA

POEMMA WILL OPEN TWO NEW COSMIC WINDOWS: NEUTRINOS FROM ASTROPHYSICAL TRANSIENTS (> 20 PeV), AND EXTREME ENERGY COSMIC RAY (> 30 EeV)

SPACE PROVIDES ORDER OF MAGNITUDES IMPROVED SENSITIVITY OVER A WIDE RANGE OF ENERGIES.

POEMMA CAN REWRITE THE TEXTBOOK ON THE MOST EXTREME ASTROPHYSICAL ACCELERATORS AND FUNDAMENTAL PHYSICS INTERACTIONS WELL ABOVE TERRESTRIAL ACCELERATOR ENERGIES.

SPACE PROBES OF THE HIGHEST ENERGY PARTICLES:

THE EARTH'S ATMOSPHERE AS AN EXTREME ENERGY PARTICLE OBSERVATORY

PDEMMA

UHECR AND NEUTRIND OBSERVATIONS

