NextGAPES-2019 Moscow – June 21-22, 2019

#### Cosmic Ray Energetics And Mass CREAM for the ISS (ISS-CREAM)

Eun-Suk Seo University of Maryland for the ISS-CREAM Collaboration



# **ISS-CREAM Collaboration**



Y. Amare<sup>a</sup>, D. Angelaszek<sup>a,b</sup>, N. Anthony<sup>a</sup>, G. H. Choi<sup>c</sup>, M. Chung<sup>a</sup>, M. Copley<sup>a</sup>, L. Derome<sup>d</sup>, L. Eraud<sup>d</sup>, C. Falana<sup>a</sup>, A. Gerrety<sup>a</sup>, L. Hagenau<sup>a</sup>, J. H. Han<sup>a</sup>, H. G. Huh<sup>a</sup>, Y. S. Hwang<sup>e</sup>, H. J. Hyun<sup>e</sup>, H.B. Jeon<sup>e</sup>, J. A. Jeon<sup>c</sup>, S. Jeong<sup>c</sup>, S. C. Kang,<sup>e</sup> H. J. Kim<sup>e</sup>, K. C. Kim<sup>a</sup>, M. H. Kim<sup>a</sup>, H. Y. Lee<sup>c</sup>, J. Lee<sup>c</sup>, M. H. Lee<sup>a</sup>, C. Lamb<sup>a</sup>, J. Liang<sup>a</sup>, L. Lu<sup>a</sup>, J. P. Lundquist<sup>a</sup>, L. Lutz<sup>a</sup>, B. Mark<sup>a</sup>, A. Menchaca-Rocha<sup>f</sup>, T. Mernik<sup>a</sup>, M. Nester<sup>a</sup>, O. Ofoha<sup>a</sup>, H. Park<sup>e</sup>, I. H. Park<sup>c</sup>, J. M. Park<sup>e</sup>, N. Picot-Clemente<sup>a</sup>, S. Rostsky<sup>a</sup>, E. S. Seo<sup>a,b</sup>, J. R. Smith<sup>a</sup>, R. Takeishi<sup>c</sup>, T. Tatoli<sup>a</sup>, P. Walpole<sup>a</sup>, R. P. Weinmann<sup>a</sup>, J. Wu<sup>a</sup>, Z. Yin<sup>a,b</sup>, Y. S. Yoon<sup>a,b</sup> and H. G. Zhang<sup>a</sup>

<sup>a</sup>Inst. for Phys. Sci. and Tech., University of Maryland, College Park, MD, USA
 <sup>b</sup>Dept. of Physics, University of Maryland, College Park, MD, USA
 <sup>c</sup>Dept. of Physics, Sungkyunkwan University, Republic of Korea
 <sup>d</sup>Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France
 <sup>e</sup>Dept. of Physics, Kyungpook National University, Republic of Korea
 <sup>f</sup>Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico

# How do cosmic accelerators work?



Eun-Suk Seo

#### ISS-CREAM launch on SpaceX-12, 8/14/17



seven times to collect high-energy cosmic

nave abarroad notifies like Sepatane and

waves. In the centuries after a supernova,

# **CREAM** Cosmic Ray Energetics And Mass

Seo et al. Adv. in Space Res., 33 (10), 1777, 2004; Ahn et al., NIM A, 579, 1034, 2007

- Transition Radiation Detector (TRD) and Tungsten Scintillating Fiber Calorimeter
  - In-flight cross-calibration of energy scales



- Complementary Charge
  Measurements
  - Timing-Based Charge Detector
  - Cherenkov Counter
  - Pixelated Silicon Charge Detector



#### Eun-Suk Seo

#### Balloon Flights in Antarctica Offer Hands-On Experience CREAM has trained >100 students



**Cosmic Journey** 

#### **CREAM Balloon Flight Heritage**

Seven Balloon Flights in Antarctica: ~ 191 days Cumulative Exposure



#### **BACCUS Balloon Payload 30 Days Flight**

Kim et al. Proc. 35th ICRC, Busan, 182, 2017



BACCUS flight trajectory Nov. 28 – Dec. 28, 2016

- Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) set two records: the earliest launch, i.e., the first LDB to launch in November and (2) the closest landing to the launch site.
- BACCUS is to investigate cosmic ray propagation history using Boron to Carbon ratio at high energies where measurements are not available.
- The BACCUS experiment provides simultaneous measurements of cosmic-ray nuclei from Z = 1 to Z =26 using segmented silicon charge detector and timing charge detector. Both calorimeter and transition radiation detector provide energy measurements.



BACCUS was recovered with 1 Twin Otter and 1 Helicopter flight after landing on the Ross Ice Shelf only 55 nautical miles east of McMurdo Station. CREAM



BACCUS payload at CSBF during the end to end test.



### Elemental Spectra over 4 decades in energy

Yoon et al. ApJ 728, 122, 2011; Ahn et al., ApJ 715, 1400, 2010; Ahn et al. ApJ 707, 593, 2009



Distribution of cosmic-ray charge measured with the SCD. The individual elements are clearly identified with excellent charge resolution. The relative abundance in this plot has no physical significance.



#### CREAM spectra harder than prior lower energy measurements



# **Spectral Hardening Confirmed**



#### Is the "knee" due to a limit in SNR acceleration?

- The all particle spectrum extends several orders of magnitude beyond the highest energies thought possible for supernova shock acceleration
- And, there is a "knee" (index change) above 10<sup>15</sup> eV
- Acceleration limit signature: Characteristic elemental composition change over two decades in energy below and approaching the knee
- Direct measurements of individual elemental spectra can test the supernova acceleration model



# **Multiple Sources?**

T. K. Gaisser, T. Stanev and S. Tilav, Front. Phys. 8(6), 748, 2013

Acceleration limit:

 $E_{max_z} = Ze \ x \ R = Z \ x \ E_{max_p}$ , where rigidity R = Pc/Ze



#### Need to extend measurements to higher energies



# ISS-CREAM: CREAM for the ISS

E. S. Seo et al, Advances in Space Research, 53/10, 1451, 2014

ISS-CREAM installed on the ISS 8/22/17

#### SpaceX-12 Launch on 8/14/2017



- Building on the success of the balloon flights, the payload was transformed for accommodation on the ISS (NASA's share of JEM-EF).
  - Increase the exposure by an order of magnitude
- ISS-CREAM will measure cosmic ray energy spectra from 10<sup>12</sup> to >10<sup>15</sup> eV with individual element precision over the range from protons to iron to:
  - Probe cosmic ray origin, acceleration and propagation.
  - Search for spectral features from nearby/young sources, acceleration effects, or propagation history.

#### F

### **ISS-CREAM Instrument**

Seo et al. Adv. in Space Res., 53/10, 1451, 2014; Smith et al. PoS(ICRC2017)199, 2017



### **Cosmic Ray Event Simulation**

Seo et al. Adv. in Space Res., **53**/10, *1451*, 2014; Smith et al. PoS(ICRC2017)199, 2017



### Flight data: Cosmic Ray Detection



### Examples of high energy events



#### 2017093002:47:41 E = 1.88 PeV

20170930 02:47:41 049280 evt19701\_0 low



20171021 13:37:40 E = 748 TeV



### SCD provides particle charge identification



### SCD: individual elements are clearly identified





Distribution of cosmic-ray charge measured with the SCD. The individual elements are clearly identified with excellent charge resolution. The relative abundance in this plot has no physical significance

### CAL provides energy measurements



### **ISS-CREAM Science Operation**



# Web Monitoring and Data Distribution http://cosmicray.umd.edu/iss-cream/data

- Monitor performance of CREAM instrument using in-flight calibration data
  - Every hour: Noise level (pedestal runs) of Calorimeter, SCD, and TCD/BCD
  - Every two hours: Charge gain, HPD aliveness etc.
- Relay the housekeeping data to a web server for worldwide monitoring
  - 1558 housekeeping parameters every 5 sec
  - Provides warning by color display when values are out of range.
- Visualize interactions of cosmic rays in CREAM by generating event display plots of science events.
- Process all data and distribute them in ROOT format for analysis.
  - Refine the initial pre-launch detector calibrations channel by channel to reflect the actual flight conditions, including timedependent effects





| EvtTime  | 11:37:45 | CalHV6a  | -0.08  | HPD12    | 26.27  |
|----------|----------|----------|--------|----------|--------|
| RawClb   | 0.00     | CalHV6b  | -0.05  | HPD78    | 27.94  |
| RawExt   | 0.00     | CalHV7a  | -0.08  | HPD34    | 26.68  |
| RawCD1   | 0.00     | CalHV7b  | -0.06  | HPD56    | 25.91  |
| RawCal   | 0.00     | CalHV8a  | -0.08  | SFC-A    | 26.20  |
| RawCD2   | 0.00     | CalHV8b  | -0.06  | ColdPla2 | 26.08  |
| TrgTime  | 18:00:00 | CalBiasl | 55.96  | ColdPla3 | -74.84 |
| TrgTotal | 0.00     | CalBias2 | 55.44  | ATC53    | 27.18  |
| TrgExt   | 0.00     | CalBias3 | 56.11  | ATC54    | 26.39  |
| TrgClb   | 0.00     | CalBias4 | 55.35  | ATCS5    | 25.98  |
| TrgEHi   | 0.00     | CalBias5 | 56.18  | SFC-B    | 26.33  |
| TrgELow  | 0.00     | CalBias6 | 55.44  | RedPM    | 25.93  |
| TrgZClb  | 0.00     | CalBias7 | 56.16  | +X-YCP   | 23.88  |
| NioTime  | 11:37:47 | CalBias8 | 55.40  | HKBox    | 24.80  |
| NioTRate | 1.93     | BsdRet1  | 0.02   | BottPla  | 23.62  |
| NioNRate | 0.00     | BsdRet2  | 0.02   | ATCS6    | 24.68  |
| CMDQ     | 0.00     | BsdTQB   | 26.49  | +3o3VC   | 3.30   |
| HKQ      | 0.00     | BsdTQA   | 26.83  | +5o2VC   | 5.00   |
| EVTQ     | 0.00     | BsdTQC   | 25.21  | +12VC    | 12.12  |
| DATO     | 0.00     | BsdTQD   | 24.66  | m5o2VC   | -4.99  |
| DAT1     | 0.00     | Bsd-12V  | -11.76 | TempC    | 32.79  |
| PKT0     | 0.02     | Bsd+1o5V | 1.52   | 5o2cC1   | 0.69   |

#### CAL pedestal reached a plateau in November 2017



### Temperature Dependence



### **ISS** orbit and SAA



- August 2017 August 2018: Instrument on only during non-SAA orbit to avoid potential radiation damage
- September 2018 February 2019: Instrument on continuously

**Cosmic Rays** 

Eun-Suk Seo

#### ISS-CREAM met Minimum Mission Success Criteria

- The payload survives the launch and is safely placed on the ISS without any damage that precludes minimum success
- Science data are received at the Science Operation Center and commands can be sent to the payload
- ✓ The science instrument provides publishable science data
- Mission Minimum Success:
  - $\checkmark$  Launch and operation for > 300 days
  - The instrument will be considered functional if at least one layer of the SCD identifies charges and CAL provides energy measurements
- Mission Comprehensive Success:
  - Launch and operation for >1000 days
  - CAL provides its own event trigger, energy measurements, and x,y,z tracking coordinates
  - ✓ SCD provides particle charge identification
  - ✓ TCD/BCD provides its own event trigger and shower profile
  - BSD measures both prompt shower particles and delayed neutron signals

# **ISS-CREAM** takes the next major step

- The ISS-CREAM space mission can take the next major step to 10<sup>15</sup> eV, and beyond, limited only by statistics.
- The 3-year goal, 1-year minimum exposure would greatly reduce the statistical uncertainties and extend CREAM measurements to energies beyond any reach possible with balloon flights.



#### Electron Proton Separation Park et al. Adv. In Space. Res. 62/10, 2939, 2018



#### **Cosmic Ray Observatory in Space**

AMS

CALET

DAMPE

A CONTRACT

**ISŞ-CREAM** 



Voyager