AMS-100

A Magnetic Spectrometer with an acceptance of 100 m² sr in Space

First Workshop NextGAPES -2019

Lomonosov Moscow State University, Physics Department, Skobeltsyn Institute of Nuclear Physics.

Moscow - June, 21-22, 2019

Major Cosmic Ray Experiments

MAG

TA -

Fermi

Poemma

Ice Cube

LHAASO

AMS-02

ISS CREAM

EUSO-SPB

We have only one magnetic spectrometer in space: AMS-02

The Alpha Magnetic Spectrometer was installed on the ISS in May 2011.

AMS-02 has recorded more than 135 Billion cosmic rays and will continue through the lifetime of ISS.

The AMS-02 Transition Radiation Detector was build at RWTH Aachen October 2007

The 200 kg Upgraded Tracker Thermal Pump System for AMS-02 was build at RWTH Aachen and will be brought to the ISS in October 2019.

AMS-02 Results

GeV²]

S⁻¹

Sr⁻¹

[m⁻²

Φ

 $\widetilde{\mathsf{E}}_3^3$

A. Kounine, NextGAPES-2019, Moscow

5m x 4m x 3m

7 tons

Radiators

We have to start now to work on the next generation magnetic spectrometer in space !

TRD

TOF 1,

TOF 3,

RICH

ECAL

Magnet

It took 600 Physicists and Engineers from 16 Countries and 60 Institutes 17 years to construct the Alpha Magnetic Spectrometer.

300,000 electronic channels

Silicon layer

7 Silicon layers

11,000 Photo Sensors Silicon layer

- The design of AMS-100 was inspired by the BESS Ballon **Experiment.**
- A thin solenoid instrumented on the inside with a tracker like a classical collider experiment has an angular acceptance for cosmic rays of 4π , if operated in space far away from earth, superior to any telescope like geometry. • The B-Field of a long solenoid depends only on the number of turns, the current and the length, but not on the radius.
- Increasing the radius will therefore quadratically increase both the energy reach and the acceptance of the spectrometer at the same time.

James Webb, the next generation space telescope will be operated at Lagrange Point 2,

and this is also the only option to significantly extend the AMS-02 physics program.

Interplanetary Magnetic Field

Magnetic field lines

$\bar{B} = 6 nT$ B = 0 - 37 nT

For a large volume solenoid with a B-Field of 1 Tesla one typically has a Magnetic Moment of 70 MAm² which results in a Torque of:

 $\overrightarrow{T} = \overrightarrow{M} \times \overrightarrow{B} \simeq 0.4 \text{ Nm}$

Solar wind flow

Neutral current sheet

ACE Measurements at Lagrange Point 1

The current in the Compensation Coil is adjusted such that the total magnetic dipole moment of the system is zero.

13

Physics with cosmic rays at Lagrange Point 2

- A 3 mm thin solenoid provides a magnetic field of 1 Tesla in a volume of 75 m³.
- The solenoid is constructed from HTS tapes and operated at 50 K behind the sunshield in thermal equilibrium with the environment.
- An expandable compensation coil with 12 m diameter balances the magnetic dipole moment of the solenoid.
- The solenoid is instrumented on the inside with a silicon tracker and a calorimeter system (70 X_0 , 4 λ_I).
- AMS-100 has a geometrical acceptance of 100 m² sr and a maximum detectable rigidity of 100 TV.

Space Craft & Service Module

Sun Shield

Solar Panels

Electric propulsion

con tracker and a calorimeter system (70 X_0 , 4 λ_I). and a maximum detectable rigidity of 100 TV.

Si-Tracker

Calorimeter

Compensation

Coil

Current and upcoming rockets

Name Ariane 5 **Falcon Heavy** Long March 5 Long March 9 **SLS Block 1B SLS Block 2**

LEO [kg] 21,000 63,800 25,000 130,000 105,000 130,000

other [kg] 10,730 GTO 2002 26,700 GTO 2017 8,000 TLI 2016 50,000 TLI 2025 39,100 TLI 2022 45,000 TLI 2025

Operational **Under development**

- Low Earth orbit LEO:
- **Geostationary transfer orbit** GTO:
- **Trans-lunar injection TLI:**

First flight ESA **SpaceX** CALT CALT NASA NASA

AMS-100: 40 t

S. K. III

AMS-100 – Detector Concept

SciFi-Tracker Measurement of R and Z 2 x 6 Measurements, 0.040 mm resolution.

Si-Tracker, Layer 9 & 10

Silicon-Tracker Measurement of R and Z 2 x 12 Space Points, 0.005 mm resolution.

Si-Tracker, Layer 5 & 6

Si-Tracker, Layer 3 & 4

Si-Tracker, Layer 1 & 2

Measurement of E and Z

Radiator

Outer SciFi, Layer 1 - 3

Outer ToF, Layer 1 & 2

Magnet

Inner ToF, Layer 1 & 2

Inner SciFi, Layer 1 - 3

Si-Tracker, Layer 11 & 12

ToF

Measurement of β=P/E and Z 2 x 4 Measurements, <20 ps resolution.

Si-Tracker, Layer 7 & 8

Pre-Shower

Calorimeter

Measurement of E and Z

17

Radiator

- Outer SciFi, Layer 1 3
- Outer ToF, Layer 1 & 2

Magnet

Inner ToF, Layer 1 & 2

Inner SciFi, Layer 1 - 3

Si-Tracker, Layer 11 & 12

Si-Tracker, Layer 9 & 10

Si-Tracker, Layer 7 & 8

Si-Tracker, Layer 5 & 6

Si-Tracker, Layer 3 & 4

Si-Tracker, Layer 1 & 2

Pre-Shower

Calorimeter

Scintillating Fiber - Tracker: First & Fast Measurement of R and Z **Provides 2x6 Measurements with 0.040 mm resolution.** MDR: 3 TV

Scintillating Fiber - Tracker

20

• 350 m² of Scintillating Fiber Tracker Modules have just been produced in the past 2 years by an European Collaboration for the new LHCb Tracker.

• 500 of the 1500 fiber mats were produced at RWTH Aachen.

• The sensor size for a silicon tracker is 10 cm x 10 cm, with $\sigma_{Cor.}=0.01$ mm. For the new SciFi-Tracker of LHCb the sensor size is 13.5 cm x 240 cm, i.e. more than 30 times larger, with $\sigma_{\text{Cor.}}=0.05$ mm.

Both SciFi-Tracker and ToF have been tested already in an ESA Balloon Flight.

November 23rd, 2010 07:50 am 09:18 Liftoff

CALC VERDAIX Developed and Constructed at RWTH Aachen

Norway

T=1h40m

COLONES

Sweden

o Oulu

Finlan

177.000 events

Baltic Sea

T=3h10m

Radiator

- Outer SciFi, Layer 1 3
- Outer ToF, Layer 1 & 2

Magnet

Inner ToF, Layer 1 & 2

Inner SciFi, Layer 1 - 3

Si-Tracker, Layer 11 & 12

Si-Tracker, Layer 9 & 10

Si-Tracker, Layer 7 & 8

Si-Tracker, Layer 5 & 6

Si-Tracker, Layer 3 & 4

Si-Tracker, Layer 1 & 2

Pre-Shower

Calorimeter

Time-of-Flight: Provides the Trigger and measures $\beta = v/c$ **Provides 2x4 time and Z measurements** Time Resolution per Scintillator-Rod: < 20 ps

Separate Anti-Protons from Deuterium

AMS-100 ToF based on the PANDA Barrel ToF Design

Two scintillating rods read out on two sides each.
Scintillator dimensions 87 x 29.4 x 5 mm³

PANDA Barrel ToF

Scintillation Tile Hodoscope for the PANDA Barrel Time-Of-Flight Detector

William Nalti, Ken Suzuki, Stefan-Meyer-Institut, ÖAW on behalf of the PANDA/Barrel-TOF(SciTil) group

12.06.2018, ICASiPM2018

PANDA ToF - SciRod Time Resolution

 $\sigma_T \propto 1/\sqrt{Npe}$

- Larger SiPM's could increase the Surface coverage and hence improve the time resolution.
- Further improvements can be expected from faster scintillators and new SiPM's with higher photon detection efficiency.

thickness	Npe1	Npe2	time-resolut
3mm	72.37	46.84	60.34
4mm	85.64	55.14	68.09
5mm	139.94	128.69	50.14
5mm polished	111.87	78.1	48.29
6mm	101.7	70.7	48.7

Side view of the SciRod

Surface coverage = 1/4

scintillator (28.5x5 mm²)

SiPM (3x3 mm²)

LED

Temperature sensor

Scintillation Tile Hodoscope for the PANDA Barrel Time-Of-Flight Detector

William Nalti, Ken Suzuki, Stefan-Meyer-Institut, ÖAW on behalf of the PANDA/Barrel-TOF(SciTil) group

12.06.2018, ICASiPM2018

MPPC (Multi-Pixel Photon Counter)

MPPC characteristics vary with the operating voltage. Although increasing the operating voltage improves the photon detection efficiency and time resolution, it also increases the dark count and crosstalk at the same time, so an optimum operating voltage must be selected to match the application.

SiPM's will be operated in AMS-100 at 200 K. This will allow for a larger Overvoltage and hence increase the photon detection efficiency.

S13360 series

Pixel pitch: 75 µm Fill Factor: 82%

KAPDB0326EA

- **Time Resolution per SciRod: <20 ps**
- **Defines the region of interest for the SciFi-Tracker readout.**

PERDAIX – ToF 40cm x 5cm x 0.6cm 2 Layers **RWTH Aachen** (2010)

Radiator

- Outer SciFi, Layer 1 3
- Outer ToF, Layer 1 & 2

Magnet

Inner ToF, Layer 1 & 2

Inner SciFi, Layer 1 - 3

Si-Tracker, Layer 11 & 12

Si-Tracker, Layer 9 & 10

Si-Tracker, Layer 7 & 8

Si-Tracker, Layer 5 & 6

Si-Tracker, Layer 3 & 4

Si-Tracker, Layer 1 & 2

Pre-Shower

Calorimeter

High Temperature Superconducting Magnet Provides a homogenous magnetic field of 1 Tesla in a Volume of 75 m³ Operated at 50 Kelvin in thermal equilibrium with the environment

	311.5	
	293.6	
Sunshield -	275.6	
	257.7	_
	239.8	
Solonoid	221.9	
	203.9	
	186.	
	168.1	
	150.2	
Silicon	132.3	
Tracker	114.3	
200 K	96.41	
	78.48	
Compensation	60.56	
Coil	42.64	
30 K	24.72	

difference of Max. and Min. in-field Ic at 30K 1T \leq 5%

AMS-100 Magnet Parameters

	Inner	Compensation	
	Solenoid	Coil	
Inner Radius	$2.0\mathrm{m}$	$6.0\mathrm{m}$	- F
Length	$6.0\mathrm{m}$	$1.2\mathrm{m}$	6
Current	$500\mathrm{A}$	$1500\mathrm{A}$	
Temperature	$50-60~{ m K}$	$30-40~{\rm K}$	5
HTS Tape Width	$12\mathrm{mm}$	$12\mathrm{mm}$	
HTS Tape Layers	22	4	1
B_z at Center	$1.0\mathrm{T}$	$-0.06\mathrm{T}$	4
Stored Energy	$37{ m MJ}$	$4.5\mathrm{MJ}$	E
Magnetic Moment	$70{ m MAm^2}$	$-70\mathrm{MA}\mathrm{m}^2$	> 3
Coil Thickness	$3.0\mathrm{mm}$	$0.5\mathrm{mm}$	
Mass	$1.2\mathrm{t}$	$0.13\mathrm{t}$	$2 - \frac{1}{2}$
Volume	$75\mathrm{m}^3$	$136\mathrm{m}^3$	
Matarial budget	$0.12X_0$	$0.02 X_0$	1
material budget	$0.012\lambda_I$	$0.002\lambda_I$	
Wire Length	$150\mathrm{km}$	$15{ m km}$	0⊥
σ_R	$-130\mathrm{kPa}$	$-40\mathrm{kPa}$	~
$\sigma_{ heta}$	$270\mathrm{MPa}$	$250\mathrm{kPa}$	
σ_Z	$-140\mathrm{MPa}$	$-79\mathrm{kPa}$	

Calorimeter

31

- Outer SciFi, Layer 1 3
- Outer ToF, Layer 1 & 2

Magnet

Inner ToF, Layer 1 & 2

Inner SciFi, Layer 1 - 3

Si-Tracker, Layer 11 & 12

Si-Tracker, Layer 9 & 10

Si-Tracker, Layer 7 & 8

Si-Tracker, Layer 5 & 6

Si-Tracker, Layer 3 & 4

Si-Tracker, Layer 1 & 2

Pre-Shower

Calorimeter

Performance of the Tracking System The concentric 6 double layers of the Silicon Tracker provide up to 2x12 Space Points with 0.005 mm resolution and measurements of Z

Radiator

- Outer SciFi, Layer 1 3
- Outer ToF, Layer 1 & 2

Magnet

Inner ToF, Layer 1 & 2

Inner SciFi, Layer 1 - 3

Si-Tracker, Layer 11 & 12

Si-Tracker, Layer 9 & 10

Si-Tracker, Layer 7 & 8

Si-Tracker, Layer 5 & 6

Si-Tracker, Layer 3 & 4

Si-Tracker, Layer 1 & 2

Pre-Shower

Calorimeter

Pre-Shower & Calorimeter: 70 X₀ and 4 λ_1 **Energy and Direction Measurements for Photons, Positrons and Hadrons 3D Shower Reconstruction for Particle Identification**

Energy up to which the shower maximum is contained in the calorimeter.

Calorimeter inspired by the HERD Detector Concept

LYSO Crystal 3 cm x 3 cm x 3 cm

- LYSO is a Cerium doped Lutetium based scintillation crystal with a density of 7.1 g/cm³.
- The X_0 of LYSO is 1.14 cm, so each crystal is ~ 2.6 X_0

Central Support Tube 3 cm CF

LYSO crystal with large and small area photodiodes glued to one face of the cube.

R=40 cm, L= 400 cm, Weight 8.2 t 37 740 LYSO Crystals

Pre-shower: L=400 cm, Weight 4 t, Tungsten (5 X₀) instrumented with Si-Detectors

AMS-100 will measure light Nuclei in Cosmic Rays up to the maximum energy that can be reached by cosmic ray accelerators in our galaxy.

Positrons in Cosmic Rays

Electrons in Cosmic Rays

Anti-Deuterons are the most sensitive probe for New Physics in Cosmic Rays

As a Magnetic Spectrometer AMS-100 can separate Anti-Matter from Matter.

AMS-100 would observe thousands of Anti-Deuterons in cosmic rays. Integral sensitivities are not useful.

M. Korsmeier, F. Donato, N.Fornengo

Z = -1 Particles in Cosmic Rays

Measurement of cosmic gamma rays with AMS-100

Gamma rays are measured in three ways:

- 1. Using the calorimeter the acceptance is 30 m² sr. The energy reach is limited by the flux, not by the depth of the calorimeter. For energies above ~1 GeV the whole sky is covered continuously.
- 2. The 3 mm thin magnet coil (12% X₀) is a well **localized converter for photons.** The angular resolution at high energies is excellent, geometrically 0.005 mm/4000 mm, covering most of the sky continuously.
- 3. The endcap opposite to the service module is instrumented with a dedicated photon detector inspired by the GAMMA-400 design to optimize the angular resolution at low energies.

Angular Resolution for Converted Photons

Crab Nebula with Chandra (blue and white), Hubble (purple), and Spitzer (pink) data.

FERMI, CTA

AMS-100

CRAB Nebula TeV - Photons

Weight: 40 t **MDR:** 100 TV

Readout-Channels: 810⁶ **100 m² sr** Acceptance:

Space Craft & **Service Module**

Sun Shield

Solar Panels

Electric propulsion

New groups who are interested to work on AMS-100 are very welcome !

