

Recent progresses of the Dark Matter Particle Explorer (DAMPE)

人名法山

Qiang Yuan (東航

Purple Mountain Observatory (on behalf of the DAMPE collaboration) NextGAPES-2019 workshop, Moscow, June 21-22, 2019

The collaboration

- CHINA
 - Purple Mountain Observatory, CAS, Nanjing
 - Institute of High Energy Physics, CAS, Beijing
 - National Space Science Center, CAS, Beijing
 - University of Science and Technology of China, Hefei
 - Institute of Modern Physics, CAS, Lanzhou
- ITALY
 - INFN Perugia and University of Perugia
 - INFN Bari and University of Bari
 - INFN Lecce and University of Salento
 - INFN LNGS and GSSI
- SWITZERLAND
 - University of Geneva

Outline

- Introduction of DAMPE science
- DAMPE instrument
- On-orbit performance
- Physical Results
- Summary

Composition of the Universe

Detection of dark matter particles

Dark matter indirect detection experiments

Yangbajing/LHAASO

HESS/MAGIC/VERITAS

Dark Matter Particle Explorer

Cosmic ray origin & == propagation

Indirect detection of dark matter particles

Challenge 1: Particle identification

Challenge 2: large dynamic range

To observe electrons/photon from GeV-10 TeV and nuclei to 100 TeV, the required dynamic range of a single bar is $\sim 10^{6}$

Challenge 3: energy resolution

(Phys. Lett. B 715 (2012) 35)

DAMPE instrument

Instrument Design

- PSD: charge measuresument via dE/dx and ACD for photons
- STK: track, charge, and photon converter
- BGO: energy measurement, particle (e-p) identification
- NUD: Particle identification

(Astropart.Phys. 95 (2017) 6-24)

Particle identification

Beam test @ CERN

- 14 days@PS, 29/10-11/11 2014
 - e @ 0.5GeV/c, 1GeV/c, 2GeV/c, 3GeV/c, 4GeV/c, 5GeV/c
 - p @ 3.5GeV/c, 4GeV/c, 5GeV/c, 6GeV/c, 8GeV/c, 10GeV/c
 - π-@ 3GeV/c, 10GeV/c
 - γ @ 0.5-3GeV/c
- 8 days@SPS, 12/11-19/11 2014
 - e @ 5GeV/c, 10GeV/c, 20GeV/c, 50GeV/c, 100GeV/c, 150GeV/c, 200GeV/c, 250GeV/c
 - p @ 400GeV/c (SPS primary beam)
 - γ @ 3-20GeV/c
 - μ@ 150GeV/c,
- 17 days@SPS, 16/3-1/4 2015
 - Fragments: 66.67-88.89-166.67GeV/c
 - Argon: 30A- 40A- 75AGeV/c
 - Proton: 30GeV/c, 40GeV/c
- 21 days@SPS, 10/6-1/7 <u>2015</u>
 - Primary Proton: 400GeV/c
 - Electrons @ 20, 100, 150 GeV/c
 - g @ 50, 75 , 150 GeV/c
 - m @ 150 GeV /c
 - p+@10, 20, 50, 100 GeV/c
- 6 days@SPS, 20/11-25/11 2015
 - -- Pb 030 AGeV/c (and fragments)

Beam test @ CERN

(Astropart.Phys. 95 (2017) 6-24)

Launch on 17th Dec. 2015

Jiuquan Satellite Launch Center

On-orbit performance

Observation overview

6 full scans of the sky

5M events/day 5.7 billion in total

Detector stability

Charge measurement by PSD

BGO energy calibration: MIPs

BGO energy measurement: linearity

Absolute energy scale: geomagnetic cutoff

The cutoff energy is stable with time. A slight decrease is due to solar modulation of low energy primary electrons.

e/p separation: shower shapes

0.5-1.0 TeV

- We use the lateral (SumRMS) and longitudinal (energy ratio in last layer) developments of the showers to discriminate electrons from protons
- For 90% electron efficiency, proton background is ~2% @ TeV, ~5% @ 2 TeV, ~10% @ 5 TeV

(Nature 552 (2017) 63-66)

Validation of shape parameter ζ with BT and photons

Physical results

γ-ray sky map

γ-ray point sources

- 143 sources with TS > 20
- Most are pulsars and AGNs

γ-ray variables

- Flares from AGNs : CTA 102 and 3C 454.3
- Coincident with other telescopes

(Yuan et al. PoS (ICRC2017) 617)

Total e⁺ + e⁻ spectrum

(Nature 552 (2017) 63-66)

Spectral break observed by AMS-02

The $(e^+ + e^-)$ flux deviates from a single power law above ~800 GeV

The TeV softening of the total e+e- spectrum has been well established. It may reflect the discreteness of the high-energy e+e- source distribution.

Spectral structures of nuclei

Proton spectrum by DAMPE

- Confirms the hundreds GeV hardening
- Detecting a softening at ~13 TeV with high significance

Coming soon!

Electron Forbush decrease (2017/09/06)

Possible successor of DAMPE: very large area gamma-ray space telescope (VLAST)

VLAST: designed performance

- Energy range: 0.2 GeV - 20 TeV
- Geometry factor: ~ 3 m²sr
- Energy resolution:1% @ 100 GeV
- Spatial resolution:0.1° @ 100 GeV

Keep excellent performance of energy resolution and e/p separation capabilities of DAMPE, enhace substantially the gamma-ray potential

BGO(with tungsten)STKPSDth $120 \times 120 \text{ cm}^2$ $133 \times 133 \text{ cm}^2$ $165 \times 165 \text{ cm}^2$

VLAST: scientific goals

- Dark matter indirect detection
- High-energy time-domain astrophysics
- Cosmic ray origin, acceleration, and propagation
- Cosmology and fundamental physics

We want (need) a larger detector with (in particular) better performance for gamma-ray observations to study quite a lot of important, interesting problems in physics and astrophysics

VLAST: preliminary simulation

EdepRatio

VLAST: preliminary simulation

Proton rejection by > 99.99% (for 90% electron eff.) at 500 GeV

- DAMPE detector is working extremely well since launch
- Very precise measurements of the e⁺+e⁻ spectrum from 25 GeV to 4.6 TeV have been obtained, showing a spectral break at ~TeV energies and possible new spectral features
- Precise measurements of proton spectrum from 40 GeV to 100 TeV have been obtained, revealing interesting features at ~10 TeV
- More results are coming

Thank You!